3 research outputs found

    Origin of Sn(II) oxidation in tin halide perovskites

    Get PDF
    Tin-halide perovskites have great potential as photovoltaic materials, but their performance is hampered by undesirable oxidation of Sn(ii) to Sn(iv). NMR proves DMSO to be a main cause of oxidation

    Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells

    Get PDF
    The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long‐term stability of devices. A detailed understanding of the ion migration‐driven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long‐term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias‐induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide‐rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance

    20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks

    No full text
    Solar cells incorporating metal-halide perovskite (MHP) semiconductors are continuing to break efficiency records for solution-processed solar cell devices. Scaling MHP-based devices to larger area prototypes requires the development and optimization of scalable process technology and ink formulations that enable reproducible coating results. It is demonstrated that the power conversion efficiency (PCE) of small-area methylammonium lead iodide (MAPbI3) devices, slot-die coated from a 2-methoxy-ethanol (2-ME) based ink with dimethyl-sulfoxide (DMSO) used as an additive depends on the amount of DMSO and age of the ink formulation. When adding 12 mol% of DMSO, small-area devices of high performance (20.8%) are achieved. The effect of DMSO content and age on the thin film morphology and device performance through in situ X-ray diffraction and small-angle X-ray scattering experiments is rationalized. Adding a limited amount of DMSO prevents the formation of a crystalline intermediate phase related to MAPbI3 and 2-ME (MAPbI3-2-ME) and induces the formation of the MAPbI3 perovskite phase. Higher DMSO content leads to the precipitation of the (DMSO)2MA2Pb3I8 intermediate phase that negatively affects the thin-film morphology. These results demonstrate that rational insights into the ink composition and process control are critical to enable reproducible large-scale manufacturing of MHP-based devices for commercial applications
    corecore