1,316 research outputs found

    Computations underlying sensorimotor learning

    Get PDF
    The study of sensorimotor learning has a long history. With the advent of innovative techniques for studying learning at the behavioral and computational levels new insights have been gained in recent years into how the sensorimotor system acquires, retains, represents, retrieves and forgets sensorimotor tasks. In this review we highlight recent advances in the field of sensorimotor learning from a computational perspective. We focus on studies in which computational models are used to elucidate basic mechanisms underlying adaptation and skill acquisition in human behavior.This work was supported by the Wellcome Trust, the Human Frontiers Science Program, the Royal Society (Noreen Murray Professorship in Neurobiology to D.M.W.) and the Canadian Institutes of Health Research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.conb.2015.12.00

    Computations underlying sensorimotor learning.

    Get PDF
    The study of sensorimotor learning has a long history. With the advent of innovative techniques for studying learning at the behavioral and computational levels new insights have been gained in recent years into how the sensorimotor system acquires, retains, represents, retrieves and forgets sensorimotor tasks. In this review we highlight recent advances in the field of sensorimotor learning from a computational perspective. We focus on studies in which computational models are used to elucidate basic mechanisms underlying adaptation and skill acquisition in human behavior.This work was supported by the Wellcome Trust, the Human Frontiers Science Program, the Royal Society (Noreen Murray Professorship in Neurobiology to D.M.W.) and the Canadian Institutes of Health Research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.conb.2015.12.00

    Q&A: Robotics as a tool to understand the brain.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Sex differences in plasma clozapine and norclozapine concentrations in clinical practice and in relation to body mass index and plasma glucose concentrations: a retrospective survey

    Get PDF
    Background Clozapine is widely prescribed and, although effective, can cause weight gain and dysglycemia. The dysmetabolic effects of clozapine are thought to be more prevalent in women with this gender on average attaining 17 % higher plasma clozapine concentrations than men. Methods We investigated the relationship between dose, body mass index (BMI), plasma glucose concentration, and plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in 100 individuals with a severe enduring mental illness. Results Mean (10th/90th percentile) plasma clozapine concentrations were higher for women [0.49 (0.27–0.79) mg/L] compared with men [0.44 (0.26–0.70) mg/L] (F = 2.2; p = 0.035). There was no significant gender difference in the prescribed clozapine dose. BMI was significantly higher in women [mean (95 % CI) = 34.5 (26.0–45.3)] for females compared with 32.5 (25.2–41.0) for males. Overall, BMI increased by 0.7 kg/m 2 over a mean follow-up period of 210 days. A lower proportion, 41 % of women had a fasting blood glucose ≤6.0 mmol/L (<6.0 mmol/L is defined by the International Diabetes Federation as normal glucose handling), compared with 88 % of men (χ2  = 18.6, p < 0.0001). Conclusions We have shown that mean BMI and blood glucose concentrations are higher in women prescribed clozapine than in men. Women also tended to attain higher plasma clozapine concentrations than men. The higher BMI and blood glucose in women may relate to higher tissue exposure to clozapine, as a consequence of sex differences in drug metabolism

    Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive

    Get PDF
    When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause

    Human decision making anticipates future performance in motor learning.

    Get PDF
    It is well-established that people can factor into account the distribution of their errors in motor performance so as to optimize reward. Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward. One group of participants performed a virtual throwing task in which, periodically, they were given the opportunity to select from a set of smaller targets of increasing value. A second group of participants performed a reaching task under a visuomotor rotation in which, after performing a initial set of trials, they selected a reward structure (ratio of points for target hits and misses) for different exploitation horizons (i.e., numbers of trials they might be asked to perform). Because movement errors decreased exponentially across trials in both learning tasks, optimal target selection (task 1) and optimal reward structure selection (task 2) required taking into account future performance. The results from both tasks indicate that people anticipate their future motor performance so as to make decisions that will improve their expected future reward

    Multiple motor memories are learned to control different points on a tool.

    Get PDF
    Skillful object manipulation requires learning the dynamics of objects, linking applied force to motion 1 ,2 . This involves the formation of a motor memory 3 ,4 , which has been assumed to be associated with the object, independent of the point on the object that one chooses to control. Importantly, in manipulation tasks, different control points on an object, such as the rim of a cup when drinking or its base when setting it down, can be associated with distinct dynamics. Here we show that opposing dynamic perturbations, which interfere when controlling a single location on an object, can be learned when each is associated with a separate control point. This demonstrates that motor memory formation is linked to control points on the object, rather than the object per se . We also show that the motor system only generates separate memories for different control points if they are linked to different dynamics, allowing efficient use of motor memory. To account for these results, we develop a normative switching state-space model of motor learning, in which the association between cues (control points) and contexts (dynamics) is learned rather than fixed. Our findings uncover an important mechanism through which the motor system generates flexible and dexterous behavior

    Endogenous Angiotensin II‐induced p44/42 Mitogen‐Activated Protein Kinase Activation Mediates Sodium Appetite but not Thirst or Neurohypophysial Secretion in Male Rats

    Get PDF
    The renin–angiotensin–aldosterone system makes a critical contribution to body fluid homeostasis, and abnormalities in this endocrine system have been implicated in certain forms of hypertension. The peptide hormone angiotensin II (AngII) regulates hydromineral homeostasis and blood pressure by acting on both peripheral and brain targets. In the brain, AngII binds to the angiotensin type 1 receptor (AT1R) to stimulate thirst, sodium appetite and both arginine vasopressin (AVP) and oxytocin (OT) secretion. The present study used an experimental model of endogenous AngII to examine the role of p44/42 mitogen‐activated protein kinase (MAPK) as a signalling mechanism to mediate these responses. Animals were given a combined treatment of furosemide and a low dose of captopril (furo/cap), comprising a diuretic and an angiotensin‐converting enzyme inhibitor, respectively, to elevate endogenous AngII levels in the brain. Furo/cap induced p44/42 MAPK activation in key brain areas that express AT1R, and this effect was reduced with either a centrally administered AT1R antagonist (irbesartan) or a p44/42 MAPK inhibitor (U0126). Additionally, furo/cap treatment elicited water and sodium intake, and irbesartan markedly reduced both of these behaviours. Central injection of U0126 markedly attenuated furo/cap‐induced sodium intake but not water intake. Furthermore, p44/42 MAPK signalling was not necessary for either furo/cap‐ or exogenous AngII‐induced AVP or OT release. Taken together, these results indicate that p44/42 MAPK is required for AngII‐induced sodium appetite but not thirst or neurohypophysial secretion. This result may allow for the discovery of more specific downstream targets of p44/42 MAPK to curb sodium appetite, known to exacerbate hypertension, at the same time as leaving thirst and neurohypophysial hormone secretion undisturbed

    Endogenous Angiotensin II‐induced p44/42 Mitogen‐Activated Protein Kinase Activation Mediates Sodium Appetite but not Thirst or Neurohypophysial Secretion in Male Rats

    Get PDF
    The renin–angiotensin–aldosterone system makes a critical contribution to body fluid homeostasis, and abnormalities in this endocrine system have been implicated in certain forms of hypertension. The peptide hormone angiotensin II (AngII) regulates hydromineral homeostasis and blood pressure by acting on both peripheral and brain targets. In the brain, AngII binds to the angiotensin type 1 receptor (AT1R) to stimulate thirst, sodium appetite and both arginine vasopressin (AVP) and oxytocin (OT) secretion. The present study used an experimental model of endogenous AngII to examine the role of p44/42 mitogen‐activated protein kinase (MAPK) as a signalling mechanism to mediate these responses. Animals were given a combined treatment of furosemide and a low dose of captopril (furo/cap), comprising a diuretic and an angiotensin‐converting enzyme inhibitor, respectively, to elevate endogenous AngII levels in the brain. Furo/cap induced p44/42 MAPK activation in key brain areas that express AT1R, and this effect was reduced with either a centrally administered AT1R antagonist (irbesartan) or a p44/42 MAPK inhibitor (U0126). Additionally, furo/cap treatment elicited water and sodium intake, and irbesartan markedly reduced both of these behaviours. Central injection of U0126 markedly attenuated furo/cap‐induced sodium intake but not water intake. Furthermore, p44/42 MAPK signalling was not necessary for either furo/cap‐ or exogenous AngII‐induced AVP or OT release. Taken together, these results indicate that p44/42 MAPK is required for AngII‐induced sodium appetite but not thirst or neurohypophysial secretion. This result may allow for the discovery of more specific downstream targets of p44/42 MAPK to curb sodium appetite, known to exacerbate hypertension, at the same time as leaving thirst and neurohypophysial hormone secretion undisturbed
    corecore