374 research outputs found
Cannabis-related deficits in real-world memory
Background
Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning.
Method
Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM).
Results
Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales.
Conclusions
The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits
Cannabis-related deficits in real-world memory
Background Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning. Method Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM). Results Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales. Conclusions The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits
Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems
We present a general discussion of the techniques of destabilizing dark
states in laser-driven atoms with either a magnetic field or modulated laser
polarization. We show that the photon scattering rate is maximized at a
particular evolution rate of the dark state. We also find that the atomic
resonance curve is significantly broadened when the evolution rate is far from
this optimum value. These results are illustrated with detailed examples of
destabilizing dark states in some commonly-trapped ions and supported by
insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure
Spin-polaron model: transport properties of EuB
To understand anomalous transport properties of EuB, we have studied the
spin-polaron Hamiltonian incorporating the electron-phonon interaction.
Assuming a strong exchange interaction between the carriers and the localized
spins, the electrical conductivity is calculated. The temperature and magnetic
field dependence of the resistivity of EuB are well explained. At low
temperature, magnons dominate the conduction process, whereas the lattice
contribution becomes significant at very high temperature due to the scattering
with the phonons. Large negative magnetoresistance near the ferromagnetic
transition is also reproduced as observed in EuB.Comment: 4 pages, 3 figures, accepted in Phys. Rev.
Electronic transport in EuB
EuB is a magnetic semiconductor in which defects introduce charge
carriers into the conduction band with the Fermi energy varying with
temperature and magnetic field. We present experimental and theoretical work on
the electronic magnetotransport in single-crystalline EuB. Magnetization,
magnetoresistance and Hall effect data were recorded at temperatures between 2
and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is
well reproduced by a model in which the spin disorder scattering is reduced by
the applied magnetic field. The Hall effect can be separated into an ordinary
and an anomalous part. At 20 K the latter accounts for half of the observed
Hall voltage, and its importance decreases rapidly with increasing temperature.
As for Gd and its compounds, where the rare-earth ion adopts the same Hund's
rule ground state as Eu in EuB, the standard antisymmetric
scattering mechanisms underestimate the of this contribution by several
orders of magnitude, while reproducing its almost perfectly. Well below
the bulk ferromagnetic ordering at = 12.5 K, a two-band model
successfully describes the magnetotransport. Our description is consistent with
published de Haas van Alphen, optical reflectivity, angular-resolved
photoemission, and soft X-ray emission as well as absorption data, but requires
a new interpretation for the gap feature deduced from the latter two
experiments.Comment: 35 pages, 12 figures, submitted to PR
Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3
The optical properties of the heavy-fermion compound UPdAl have been
measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm) at
temperatures K. Below the coherence temperature K, the hybridization gap opens around 10 meV. As the temperature decreases
further ( K), a well pronounced pseudogap of approximately 0.2 meV
develops in the optical response; we relate this to the antiferromagnetic
ordering which occurs below K. The frequency dependent mass and
scattering rate give evidence that the enhancement of the effective mass mainly
occurs below the energy which is associated to the magnetic correlations
between the itinerant and localized 5f electrons. In addition to this
correlation gap, we observe a narrow zero-frequency conductivity peak which at
2 K is less than 0.1 meV wide, and which contains only a fraction of the
delocalized carriers. The analysis of the spectral weight infers a loss of
kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
- …