374 research outputs found

    Cannabis-related deficits in real-world memory

    Get PDF
    Background Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning. Method Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM). Results Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales. Conclusions The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits

    Cannabis-related deficits in real-world memory

    Get PDF
    Background Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning. Method Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM). Results Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales. Conclusions The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits

    Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems

    Get PDF
    We present a general discussion of the techniques of destabilizing dark states in laser-driven atoms with either a magnetic field or modulated laser polarization. We show that the photon scattering rate is maximized at a particular evolution rate of the dark state. We also find that the atomic resonance curve is significantly broadened when the evolution rate is far from this optimum value. These results are illustrated with detailed examples of destabilizing dark states in some commonly-trapped ions and supported by insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure

    Spin-polaron model: transport properties of EuB6_6

    Full text link
    To understand anomalous transport properties of EuB6_6, we have studied the spin-polaron Hamiltonian incorporating the electron-phonon interaction. Assuming a strong exchange interaction between the carriers and the localized spins, the electrical conductivity is calculated. The temperature and magnetic field dependence of the resistivity of EuB6_6 are well explained. At low temperature, magnons dominate the conduction process, whereas the lattice contribution becomes significant at very high temperature due to the scattering with the phonons. Large negative magnetoresistance near the ferromagnetic transition is also reproduced as observed in EuB6_6.Comment: 4 pages, 3 figures, accepted in Phys. Rev.

    Electronic transport in EuB6_6

    Get PDF
    EuB6_6 is a magnetic semiconductor in which defects introduce charge carriers into the conduction band with the Fermi energy varying with temperature and magnetic field. We present experimental and theoretical work on the electronic magnetotransport in single-crystalline EuB6_6. Magnetization, magnetoresistance and Hall effect data were recorded at temperatures between 2 and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is well reproduced by a model in which the spin disorder scattering is reduced by the applied magnetic field. The Hall effect can be separated into an ordinary and an anomalous part. At 20 K the latter accounts for half of the observed Hall voltage, and its importance decreases rapidly with increasing temperature. As for Gd and its compounds, where the rare-earth ion adopts the same Hund's rule ground state as Eu2+^{2+} in EuB6_{6}, the standard antisymmetric scattering mechanisms underestimate the sizesize of this contribution by several orders of magnitude, while reproducing its shapeshape almost perfectly. Well below the bulk ferromagnetic ordering at TCT_C = 12.5 K, a two-band model successfully describes the magnetotransport. Our description is consistent with published de Haas van Alphen, optical reflectivity, angular-resolved photoemission, and soft X-ray emission as well as absorption data, but requires a new interpretation for the gap feature deduced from the latter two experiments.Comment: 35 pages, 12 figures, submitted to PR

    Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3

    Full text link
    The optical properties of the heavy-fermion compound UPd2_2Al3_3 have been measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm1^{-1}) at temperatures 2K<T<3002 {\rm K}<T< 300 K. Below the coherence temperature T50T^*\approx 50 K, the hybridization gap opens around 10 meV. As the temperature decreases further (T20T\leq 20 K), a well pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below TN14T_N\approx 14 K. The frequency dependent mass and scattering rate give evidence that the enhancement of the effective mass mainly occurs below the energy which is associated to the magnetic correlations between the itinerant and localized 5f electrons. In addition to this correlation gap, we observe a narrow zero-frequency conductivity peak which at 2 K is less than 0.1 meV wide, and which contains only a fraction of the delocalized carriers. The analysis of the spectral weight infers a loss of kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
    corecore