3,047 research outputs found

    Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation around Non-Cooperative Targets

    Full text link
    Autonomous navigation and path-planning around non-cooperative space objects is an enabling technology for on-orbit servicing and space debris removal systems. The navigation task includes the determination of target object motion, the identification of target object features suitable for grasping, and the identification of collision hazards and other keep-out zones. Given this knowledge, chaser spacecraft can be guided towards capture locations without damaging the target object or without unduly the operations of a servicing target by covering up solar arrays or communication antennas. One way to autonomously achieve target identification, characterization and feature recognition is by use of artificial intelligence algorithms. This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task. The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5), is tested using experimental data obtained in formation flight simulations in the ORION Lab at Florida Institute of Technology. The simulation scenarios vary the yaw motion of the target object, the chaser approach trajectory, and the lighting conditions in order to test the algorithms in a wide range of realistic and performance limiting situations. The data analyzed include the mean average precision metrics in order to compare the performance of the object detectors. The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.Comment: 12 pages, 10 figures, 9 tables, IEEE Aerospace Conference 202

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Nonlinear quantum gravity on the constant mean curvature foliation

    Full text link
    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analyzed as nonlinear quantum minisuperspaces in the context of the proposed theory.Comment: 14 pages. Classical and Quantum Gravity (To appear

    A parametric integer programming algorithm for bilevel mixed integer programs

    Get PDF
    We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader's variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case it yields a ``better than fully polynomial time'' approximation scheme with running time polynomial in the logarithm of the relative precision. For the pure integer case where the leader's variables are integer, and hence optimal solutions are guaranteed to exist, we present two algorithms which run in polynomial time when the total number of variables is fixed.Comment: 11 page

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    EXPRES I. HD~3651 an Ideal RV Benchmark

    Get PDF
    The next generation of exoplanet-hunting spectrographs should deliver up to an order of magnitude improvement in radial velocity precision over the standard 1 m/s state of the art. This advance is critical for enabling the detection of Earth-mass planets around Sun-like stars. New calibration techniques such as laser frequency combs and stabilized etalons ensure that the instrumental stability is well characterized. However, additional sources of error include stellar noise, undetected short-period planets, and telluric contamination. To understand and ultimately mitigate error sources, the contributing terms in the error budget must be isolated to the greatest extent possible. Here, we introduce a new high cadence radial velocity program, the EXPRES 100 Earths program, which aims to identify rocky planets around bright, nearby G and K dwarfs. We also present a benchmark case: the 62-d orbit of a Saturn-mass planet orbiting the chromospherically quiet star, HD 3651. The combination of high eccentricity (0.6) and a moderately long orbital period, ensures significant dynamical clearing of any inner planets. Our Keplerian model for this planetary orbit has a residual RMS of 58 cm/s over a ∌6\sim 6 month time baseline. By eliminating significant contributors to the radial velocity error budget, HD 3651 serves as a standard for evaluating the long term precision of extreme precision radial velocity (EPRV) programs.Comment: 11 pages, 6 figures, accepted for publication in Astronomical Journa

    Sex and size influence the spatiotemporal distribution of white sharks, with implications for interactions with fisheries and spatial management in the southwest Indian Ocean

    Get PDF
    The study was made possible through generous funding by Fischer Productions for fieldwork and equipment costs. TP was supported by a postdoctoral fellowship funded by the Nelson Mandela University Research Career Development Office (2016-2018) and funding from the South African Research Chairs Initiative awarded to Prof AT Lombard by the National Research Foundation, and by a Royal Society Newton International Fellowship (2018-2020, NF170682).Human activities in the oceans increase the extinction risk of marine megafauna. Interventions require an understanding of movement patterns and the spatiotemporal overlap with threats. We analysed the movement patterns of 33 white sharks (Carcharodon carcharias) satellite-tagged in South Africa between 2012 and 2014 to investigate the influence of size, sex and season on movement patterns and the spatial and temporal overlap with longline and gillnet fisheries and marine protected areas (MPAs). We used a hidden Markov model to identify ‘resident’ and ‘transient’ movement states and investigate the effect of covariates on the transition probabilities between states. A model with sex, total length and season had the most support. Tagged sharks were more likely to be in a resident state near the coast and a transient state away from the coast, while the probability of finding a shark in the transient state increased with size. White sharks moved across vast areas of the southwest Indian Ocean, emphasising the need for a regional management plan. White sharks overlapped with longline and gillnet fisheries within 25% of South Africa’s Exclusive Economic Zone and spent 15% of their time exposed to these fisheries during the study period. The demersal shark longline fishery had the highest relative spatial and temporal overlap, followed by the pelagic longline fishery and the KwaZulu-Natal (KZN) shark nets and drumlines. However, the KZN shark nets and drumlines reported the highest white shark catches, emphasising the need to combine shark movement and fishing effort with reliable catch records to assess risks to shark populations accurately. White shark exposure to shark nets and drumlines, by movement state, sex and maturity status, corresponded with the catch composition of the fishery, providing support for a meaningful exposure risk estimate. White sharks spent significantly more time in MPAs than expected by chance, likely due to increased prey abundance or less disturbance, suggesting that MPAs can benefit large, mobile marine megafauna. Conservation of white sharks in Southern Africa can be improved by implementing non-lethal solutions to beach safety, increasing the observer coverage in fisheries, and continued monitoring of movement patterns and existing and emerging threats.Publisher PDFPeer reviewe

    Random Fan-Out State Induced by Site-Random Interlayer Couplings

    Full text link
    We study the low-temperature properties of a classical Heisenberg model with site-random interlayer couplings on the cubic lattice. This model is introduced as a simplified effective model of Sr(Fe1−x_{1-x}Mnx_{x})O2_2, which was recently synthesized. In this material, when x=0.3x=0.3, (πππ)(\pi\pi\pi) and (ππ0)(\pi\pi0) mixed ordering is observed by neutron diffraction measurements. By Monte Carlo simulations, we find an exotic bulk spin structure that explains the experimentally obtained results. We name this spin structure the "random fan-out state". The mean-field calculations provide an intuitive understanding of this phase being induced by the site-random interlayer couplings. Since Rietveld analysis assuming the random fan-out state agrees well with the neutron diffraction pattern of Sr(Fe0.7_{0.7}Mn0.3_{0.3})O2_2, we conclude that the random fan-out state is reasonable for the spin-ordering pattern of Sr(Fe0.7_{0.7}Mn0.3_{0.3})O2_2 at the low-temperature phase.Comment: 13 pages, 12 figure

    Barriers to ideal outcomes after pediatric liver transplantation

    Full text link
    Long‐term survival for children who undergo LT is now the rule rather than the exception. However, a focus on the outcome of patient or graft survival rates alone provides an incomplete and limited view of life for patients who undergo LT as an infant, child, or teen. The paradigm has now appropriately shifted to opportunities focused on our overarching goals of “surviving and thriving” with long‐term allograft health, freedom of complications from long‐term immunosuppression, self‐reported well‐being, and global functional health. Experts within the liver transplant community highlight clinical gaps and potential barriers at each of the pretransplant, intra‐operative, early‐, medium‐, and long‐term post‐transplant stages toward these broader mandates. Strategies including clinical research, innovation, and quality improvement targeting both traditional as well as PRO are outlined and, if successfully leveraged and conducted, would improve outcomes for recipients of pediatric LT.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151257/1/petr13537.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151257/2/petr13537_am.pd
    • 

    corecore