20 research outputs found

    Toetsstenen voor geloven : ten geleide

    Get PDF
    Contains fulltext : 95546.pdf (publisher's version ) (Open Access

    In-Situ Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO<sub>2</sub>: Theory, Practice and Challenges

    No full text
    The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in-situ or operando spectroscopic techniques. In-situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.</p

    Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    No full text
    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n+/p junctions and from 7.8% to 8.8% for p+/n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling

    Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices

    Get PDF
    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)­catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n<sup>+</sup>/p junctions and from 7.8% to 8.8% for p<sup>+</sup>/n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the <i>J–V</i> measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling

    In-Situ Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO<sub>2</sub>: Theory, Practice and Challenges

    No full text
    The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in-situ or operando spectroscopic techniques. In-situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.Accepted Author ManuscriptChemE/Materials for Energy Conversion & StorageChemE/O&O groe

    Chemisorption of Anionic Species from the Electrolyte Alters the Surface Electronic Structure and Composition of Photocharged BiVO<sub>4</sub>

    Get PDF
    Photocharging has recently been demonstrated as a powerful method to improve the photoelectrochemical water splitting performance of different metal oxide photoanodes, including BiVO4. In this work, we use ambient-pressure X-ray Raman scattering (XRS) spectroscopy to study the surface electronic structure of photocharged BiVO4. The O K edge spectrum was simulated using the finite difference method near-edge structure program package, which revealed a change in electron confinement and occupancy in the conduction band. These insights, combined with ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy analyses, reveal that a surface layer formed during photocharging creates a heterojunction with BiVO4, leading to favorable band bending and strongly reduced surface recombination. The XRS images presented in this work exhibit good agreement with soft X-ray absorption near-edge structure spectra from the literature, demonstrating that XRS is a powerful tool to study the electronic and structural properties of light elements in semiconductors. Our findings provide direct evidence of the electronic modification of a metal oxide photoanode surface as a result of the adsorption of electrolyte anionic species under operating conditions. This work highlights that the surface adsorption of these electrolyte anionic species is likely present in most studies on metal oxide photoanodes and has serious implications for the photoelectrochemical performance analysis and fundamental understanding of these materials.ChemE/Materials for Energy Conversion & Storag
    corecore