317 research outputs found

    Design and implementation of a modified fourier analysis harmonic current computation technique for power active filters using DSPs

    Get PDF
    The design and implementation of a harmonic current computation technique based on a modified Fourier analysis, suitable for active power filters incorporating DSPs is presented. The proposed technique is suitable for the monitoring and control of load current harmonics for real-time applications. The derivation of the basic equations based on the proposed technique and the system implementation using the Analogue Devices SHARC processor are presented. The steady state and dynamic performance of the system are evaluated for a range of loading conditions

    Large-scale Oscillation of Structure-Related DNA Sequence Features in Human Chromosome 21

    Full text link
    Human chromosome 21 is the only chromosome in human genome that exhibits oscillation of (G+C)-content of cycle length of hundreds kilobases (500 kb near the right telomere). We aim at establishing the existence of similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi-/tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10/11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting/unwinding, stiffness, and a putative tendency for nucleosome formation.Comment: submitted to Physical Review

    Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala

    Get PDF
    none11siopenYasmin, F.; Colangeli, R.; Morena, M.; Filipski, S.; van der Stelt, M.; Pittman, Q.J.; Hillard, C.J.; Campbell Teskey, G.; McEwen, B.S.; Hill, M.N.; Chattarji, S.Yasmin, F.; Colangeli, R.; Morena, M.; Filipski, S.; van der Stelt, M.; Pittman, Q. J.; Hillard, C. J.; Campbell Teskey, G.; Mcewen, B. S.; Hill, M. N.; Chattarji, S

    Spatial Analyses of Mono, Di and Trinucleotide Trends in Plant Genes

    Get PDF
    Genomic DNA sequences display compositional heterogeneity on many scales. In this paper we analyzed tendencies and anomalies in the occurence of mono, di and trinucleotides in structural regions of plant genes. Representation of these trends as a function of position along genic sequences highlighted compositional features peculiar of either monocots or eudicots that were remarkably uniform within these two evolutionary clades. The most evident of these features appeared in the form of gradient of base content along the direction of transcription. The robustness of such a representation was validated in sequences sub-datasets generated considering structural and compositional features such as total length of cds, overall GC content and genic orientation in the genome. Piecewise regression analyses indicated that the gradients could be conveniently approximated to a two segmented model where a first region featuring a steep slope is followed by a second segment fitting a milder variation. In general, monocots species showed steeper segments than eudicots. The guanine gradient was the most distinctive feature between the two evolutionary clades, being moderately increasing in eudicots and firmly decreasing in monocots. Single gene investigation revealed that a high proportion of genes show compositional trends compatible with a segmented model suggesting that these features are essential attributes of gene organization. Dinucleotide and trinucleotide biases were referred to expectation based on a random union of the component elements. The average bias at dinucleotide level identified a significant undererpresentation of some dinucleotide and the overrepresention of others. The bias at trinucleotide level was on average low. Finally, the analysis of bryophyte coding sequences showed mononucleotide, dinucleotide and trinucleotide compositional trends resembling those of higher plants. This finding suggested that the emergenge of compositional bias is an ancient event in evolution which was already present at the time of land conquest by green plants

    The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions

    Get PDF
    We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37°C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (∼200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin

    Minimum Criteria for DNA Damage-Induced Phase Advances in Circadian Rhythms

    Get PDF
    Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p
    corecore