2,850 research outputs found

    Complementarity of dark matter detectors in light of the neutrino background

    Get PDF
    Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c2^2 and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table

    The holonomy of IIB supercovariant connection

    Full text link
    We show that the holonomy of the supercovariant connection of IIB supergravity is contained in SL(32, \bR). We also find that the holonomy reduces to a subgroup of SL(32-N)\st (\oplus^N \bR^{32-N}) for IIB supergravity backgrounds with NN Killing spinors. We give the necessary and sufficient conditions for a IIB background to admit NN Killing spinors. A IIB supersymmetric probe configuration can involve up to 31 linearly independent planar branes and preserves one supersymmetry.Comment: 8 pages, latex. v2: Minor correction

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Rocket Testing and Integrated System Health Management

    Get PDF
    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing

    Knots in SU(MN)SU\left(M|N\right) Chern-Simons Field Theory

    Full text link
    Knots in the Chern-Simons field theory with Lie super gauge group SU(MN)SU\left(M|N\right) are studied, and the % S_{L}\left(\alpha,\beta,z\right) polynomial invariant with skein relations are obtained under the fundamental representation of su(MN)\mathfrak{su}\left(M|N\right) .Comment: 15 pages, 5 figure

    Dynamics of intersecting brane systems -- Classification and their applications --

    Full text link
    We present dynamical intersecting brane solutions in higher-dimensional gravitational theory coupled to dilaton and several forms. Assuming the forms of metric, form fields, and dilaton field, we give a complete classification of dynamical intersecting brane solutions with/without M-waves and Kaluza-Klein monopoles in eleven-dimensional supergravity. We apply these solutions to cosmology and black holes. It is shown that these give FRW cosmological solutions and in some cases Lorentz invariance is broken in our world. If we regard the bulk space as our universe, we may interpret them as black holes in the expanding universe. We also discuss lower-dimensional effective theories and point out naive effective theories may give us some solutions which are inconsistent with the higher-dimensional Einstein equations.Comment: 44 pages; v2: minor corrections, references adde

    Resultado a corto plazo de la artroplastia no cementada modelo Mittelmeier

    Get PDF
    Los autores han revisado 56 Artroplastias de Cadera no cementada empleando prótesis de Cerámica. Describen su técnica quirúrgica exponiendo los resultados obtenidos. Todos estos pacientes han sido operados en el Hospital Insular de las Palmas de Gran Canaria, en el periodo comprendido entre 1984 y 1988.56 Cementedless Total Hip Prothesis of Ceramic are colected. The authors describe their surgical procedure showing the results obtained

    AGN heating, thermal conduction and Sunyaev-Zeldovich effect in galaxy groups and clusters

    Full text link
    (abridged) We investigate in detail the role of active galactic nuclei on the physical state of the gas in galaxy groups and clusters, and the implications for anisotropy in the CMB from Sunyaev-Zeldovich effect. We include the effect of thermal conduction, and find that the resulting profiles of temperature and entropy are consistent with observations. Unlike previously proposed models, our model predicts that isentropic cores are not an inevitable consequence of preheating. The model also reproduces the observational trend for the density profiles to flatten in lower mass systems. We deduce the energy E_agn required to explain the entropy observations as a function of mass of groups and clusters M_cl and show that E_agn is proportional to M_cl^alpha with alpha~1.5. We demonstrate that the entropy measurements, in conjunction with our model, can be translated into constraints on the cluster--black hole mass relation. The inferred relation is nonlinear and has the form M_bh\propto M_cl^alpha. This scaling is an analog and extension of a similar relation between the black hole mass and the galactic halo mass that holds on smaller scales. We show that the central decrement of the CMB temperature is reduced due to the enhanced entropy of the ICM, and that the decrement predicted from the plausible range of energy input from the AGN is consistent with available data of SZ decrement. We show that AGN heating, combined with the observational constraints on entropy, leads to suppression of higher multipole moments in the angular power spectrum and we find that this effect is stronger than previously thought.Comment: accepted for publication in The Astrophysical Journa
    corecore