Direct detection dark matter experiments looking for WIMP-nucleus elastic
scattering will soon be sensitive to an irreducible background from neutrinos
which will drastically affect their discovery potential. Here we explore how
the neutrino background will affect future ton-scale experiments considering
both spin-dependent and spin-independent interactions. We show that combining
data from experiments using different targets can improve the dark matter
discovery potential due to target complementarity. We find that in the context
of spin-dependent interactions, combining results from several targets can
greatly enhance the subtraction of the neutrino background for WIMP masses
below 10 GeV/c2 and therefore probe dark matter models to lower
cross-sections. In the context of target complementarity, we also explore how
one can tune the relative exposures of different target materials to optimize
the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table