103 research outputs found

    Viscoelastic Taylor-Couette instability of shear banded flow

    Get PDF
    We study numerically shear banded flow in planar and curved Couette geometries. Our aim is to capture two recent observations in shear banding systems of roll cells stacked in the vorticity direction, associated with an undulation of the interface between the bands. Depending on the degree of cell curvature and on the material’s constitutive properties, we find either (i) an instability of the interface between the bands driven by a jump in second normal stress across it or (ii) a bulk viscoelastic Taylor-Couette instability in the high shear band driven by a large first normal stress within it. Both lead to roll cells and interfacial undulations but with a different signature in each case, thereby suggesting that the roll cells in each of the recent experiments are different in origin

    Simple Model for the Deformation-Induced Relaxation of Glassy Polymers

    Get PDF
    Glassy polymers show “strain hardening”: at constant extensional load, their flow first accelerates, then arrests. Recent experiments have found this to be accompanied by a striking and unexplained dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers, creating a nonfactorable interplay between aging and strain-induced rejuvenation. Under constant load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This slows the deformation enough for the segmental modes to revitrify, causing strain hardening

    Alkaloids: Therapeutic Potential against Human Coronaviruses

    Get PDF
    Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2

    Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice

    Full text link
    Motivated by the large strain shear of loose granular materials we introduced a model which consists of consecutive optimization and restructuring steps leading to a self organization of a density field. The extensive connections to other models of statistical phyics are discussed. We investigate our model on a hierarchical lattice which allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the breakdown of ergodicity, by unusual system size effects in the development of the average density as well as by the age distribution, the latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also: cond-mat/020920

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ⋆\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    Sub-diffusion and localization in the one dimensional trap model

    Full text link
    We study a one dimensional generalization of the exponential trap model using both numerical simulations and analytical approximations. We obtain the asymptotic shape of the average diffusion front in the sub-diffusive phase. Our central result concerns the localization properties. We find the dynamical participation ratios to be finite, but different from their equilibrium counterparts. Therefore, the idea of a partial equilibrium within the limited region of space explored by the walk is not exact, even for long times where each site is visited a very large number of times. We discuss the physical origin of this discrepancy, and characterize the full distribution of dynamical weights. We also study two different two-time correlation functions, which exhibit different aging properties: one is `sub-aging' whereas the other one shows `full aging'; therefore two diverging time scales appear in this model. We give intuitive arguments and simple analytical approximations that account for these differences, and obtain new predictions for the asymptotic (short time and long time) behaviour of the scaling functions. Finally, we discuss the issue of multiple time scalings in this model.Comment: 20 pages, 15 figures, 1 reference adde

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Full text link
    • …
    corecore