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We study numerically shear banded flow in planar and curved Couette geometries. Our aim is to capture

two recent observations in shear banding systems of roll cells stacked in the vorticity direction, associated

with an undulation of the interface between the bands. Depending on the degree of cell curvature and on

the material’s constitutive properties, we find either (i) an instability of the interface between the bands

driven by a jump in second normal stress across it or (ii) a bulk viscoelastic Taylor-Couette instability in

the high shear band driven by a large first normal stress within it. Both lead to roll cells and interfacial

undulations but with a different signature in each case, thereby suggesting that the roll cells in each of the

recent experiments are different in origin.
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The Taylor-Couette instability that arises when a
Newtonian fluid is sheared between concentric cylinders
has a long history in classical hydrodynamics, dating back
to the ground breaking paper of Taylor in 1923 [1]. The
effect is inertial in origin: fluid is forced centrifugally
outward along the radial direction r, and recirculates via
roll cells stacked in the vorticity direction z. For non-
Newtonian complex fluids, the past two decades have
seen considerable interest in an inertialess, viscoelastic
Taylor-Couette (VTC) instability [2] that originates instead
in the hoop stresses (first normal stresses) that arise when a
polymeric fluid is sheared in a curved geometry. These
squeeze fluid radially inwards, again triggering an insta-
bility that leads to roll cells stacked along z.

Another intensely studied flow phenomenon in complex
fluids is that of ‘‘shear banding’’ [3], in which an initially
homogeneous shear flow gives way to a state of coexisting
bands of unequal viscosities and internal structuring, with
layer normals in the flow-gradient direction r. Close anal-
ogies exist between this nonequilibrium transition and
conventional equilibrium phase coexistence. There are
also fundamental differences, e.g., in the way the coexis-
tence state is selected in the absence of a free energy
minimization principle [4]. Beyond the basic observation
of banding, an accumulating body of data shows that many
(perhaps most) shear banded flows show complicated spa-
tiotemporal patterns and dynamics [5]. These are often
associated with vorticity bands and/or roll cells stacked
along z, in both curved Couette [6,7] and planar [8] flow
geometries, the origin of which is unclear.

In this Letter, we give the first theoretical evidence to
suggest that, in a curved flow, these rolls can arise via a
mechanism in which the high shear band, once formed,
develops a large enough first normal stress N1h to trigger a
further bulk instability of the VTC type within itself. We
further show that this bulk instability disappears below a
critical value of the cell curvature q, depending in a quan-
tifiable way on the fluid’s constitutive properties, consis-

tent with the known scaling variable _�q1=2 for VTC

(in)stability [2]. At small curvatures, however, a different
instability emerges, originating at the interface between the
bands. This instability was originally reported in planar
flow in Ref. [9]. Important additional contributions here are
to show it to be (i) controlled by the jump �N2 in second
normal stress across the interface and (ii) suppressed by
curvature. It also leads to roll cells, but with identifiably
different properties from those of the bulk instability. By
mapping a full phase diagram of the two separate instabil-
ities, we suggest that the different experimental observa-
tions of roll cells [6,8] have different origins.
Our study therefore brings together three different hy-

drodynamic instabilities in complex fluids: shear banding
itself, instability of an interface between bands, and, for the
first time theoretically, a bulk VTC-like instability of one
band. We hope thereby to stimulate further experiments, in
a family of flow cells of different curvatures, to verify (or
otherwise) our findings with regards to this strikingly rich
array of hydrodynamic instabilities.
We assume inertialess Stokes flow in which the total

deviatoric stress tensor T obeys

0 ¼ r � ðT� PIÞ ¼ r � ð�þ 2�D� PIÞ: (1)

We have further assumed T to comprise two contributions:
the term 2�D is due to the Newtonian solvent, with � the
solvent viscosity and D the symmetric part of the velocity
gradient tensor, ðrvÞ�� � @�v�. The term � is the stress

of the viscoelastic component, assumed to obey diffusive
Johnson-Segalman dynamics [10]

�ð@t þ v � rÞ�¼ a�ðD ��þ� �DÞ þ �ð� ���� ��Þ
þ 2�pD��þ ‘2r2�: (2)

Here �p is the viscoelastic contribution to the (zero) shear

viscosity, � the viscoelastic relaxation time, and � the
antisymmetric part of @�v�. The slip parameter a, which

obeys �1 � a � 1, measures the nonaffinity (fractional
stretch) of polymeric deformation compared to the flow.
For jaj< 1 (slip) the underlying constitutive curve can be
nonmonotonic, triggering shear banding. The diffusive
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term r2� is physically relevant [11] whenever stress het-
erogeneities occur on microscopic scales. For shear banded
flows it ensures unique selection of the shear stress at
which banding occurs [4], and its prefactor sets the thick-
ness Oð‘Þ of the interface between the bands.

We study flow between concentric cylinders of radii
R1; R2, in cylindrical coordinates r; �; z. The inner cylinder
rotates at speed V; the outer is fixed. We denote the cell
curvature by q ¼ ðR2 � R1Þ=R1. The flat limit of planar
Couette flow corresponds to R1 ! 1 at fixed R2 � R1, and
so q ! 0. (At q ¼ 0 we use x; y; z to denote flow, flow
gradient, and vorticity directions. The first and second
normal stresses are then N1 ¼ �xx ��yy, N2 ¼
�yy ��zz.) The natural bulk rheological variables are

the cylinder velocity V, which is the main experimental

control parameter, and the torque ~� ¼ q2� (with ~� ! Txy

as q ! 0). We assume invariance with respect to � and
study dynamics in the flow-gradient and vorticity plane rz,
the most commonly imaged experimentally. At the cylin-
ders we assume boundary conditions [12] of zero flux

normal to the wall ~̂n � r��� ¼ 08 �;� for the viscoelas-

tic stress; and no slip or permeation for the velocity. The
height of the simulated region in the vorticity direction is
Lz, with periodic boundaries.

We use units of length in which the rheometer gap R2 �
R1 ¼ 1, of time in which the viscoelastic relaxation time
scale � ¼ 1, and of mass in which the polymer viscosity
obeys �p ¼ 1. This leaves parameters a; q; �; l; Lz. All

results below have (i) � ¼ 0:05, a typical experimental
viscosity of the high shear band [6,8], (ii) estimated inter-

facial width ‘ � ðkBT=GÞ1=3 � 0:0025 [11] using linear
rheology [6] for the shear modulus G, but see Ref. [8] for a
current debate, and (iii) cell height Lz ¼ 2:0, the maximum
feasible numerically. Parameter sensitivity is briefly as
follows. (i) Halving the solvent viscosity � shifts both
stability boundaries in Fig. 3 (bottom) more unstable by
about 1=4 decade. (ii) Doubling the interfacial width ‘ has
no effect (to within the accuracy of Fig. 3) on the bulk
instability, as expected, but, also as expected [9], dramati-
cally stabilizes the interfacial stability boundary by more
than a decade. (iii) Increasing Lz to 3.0 has only a small
effect on either boundary, showing finite size effects to be
under control.

In our numerics, we change variables from ðr; zÞ to ðp; zÞ
where p ¼ lnðr=R1Þ= lnðR2=R1Þ, thereby mapping our
curved geometry onto an effectively flat one simulated on
a regular rectangular grid ðpj; ziÞ [10]. Components of the

discretized governing equations are then evolved in time as
for the flat limit [9]. Our code reproduces known results for
(i) the instability of an interface between shear bands in
planar flow [9], (ii) 1D banded states in curved Couette
flow [10], (iii) dispersion relations and stability curves
for VTC instability in the Oldroyd B model [2]. Our
results have (convergence checked) time step and grids
ð�t;�p;�zÞ ¼ ð0:0002; �=512; 1=512Þ with � ¼ 1 (1=2)
for unbanded (banded) base states.

First we discuss the results of 1D calculations that
artificially assume translational invariance in z, allowing
structure only in the main banding direction r. In the flat
limit q ! 0, force balance dictates that the shear stress Txy

is uniform across the gap. Within the assumption of a
similarly homogeneous shear rate, the constitutive relation
is given by Txyð _�Þ ¼ �xyð _�Þ þ � _� where �xyð _�Þ follows
from solving Eq. (2) subject to invariance in time and space
(thin solid line in Fig. 1, left; formula in Ref. [10]). For an
applied shear rate in the region of negative slope, homoge-
neous flow is unstable and the system separates into coex-

isting bands at a selected stress Tsel

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

¼ 0:483. The
steady state bulk flow curve thus shows a plateau in the
banding regime (thick solid line in Fig. 1, left), at this
single value of the stress for which a stationary interface
can exist between bands. For nonzero cell curvature the
stress ‘‘plateau’’ acquires a slope [10]; see Fig. 1, right.
In what follows, we will exploit the fact that for all

values of a in the allowed range �1 � a � 1 these 1D
states collapse onto a single master state [10] in terms of

the scaling variables _�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

, V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

,

�xy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

, �xxð1� aÞ, and �yyð1þ aÞ, as used in

Fig. 1. In particular, the first normal stress in the high shear
band obeys N1h � 1=ð1� aÞ as a ! 1. We therefore an-
ticipate, and demonstrate below, that in curved cells there
will arise a bulk instability of the VTC kind in this band for
large 1=ð1� aÞ. Likewise the jump in second normal stress
across the interface obeys �N2 � 1=ð1þ aÞ, and we show
below that the instability of the interface between the bands
is controlled by this variable. Note that we are using a as a
parameter that de facto controls the relative strengths of
these normal stresses N1h, �N2, and so (we show) of the
two instabilities. In reality, these stresses are set by a
combination of material properties such as micellar length
and degree of branching.
We now turn to 2D simulations in the ðr; zÞ plane. Each

run has as its initial condition a 1D ‘‘basic state’’ as just
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FIG. 1. Bulk flow curve of 1D base states for q ¼ 0:0
(left), q ¼ 0:16 (right). Symbols (i, ii, I, II) for reference in
Figs. 2 and 3.
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discussed, plus a tiny 2D perturbation. The early time
evolution of the modes expðikzÞ expð!tÞ of this perturba-
tion gives the dispersion relation !ðkÞ, in which a maxi-
mum value !� > 0 shows the basic state to be linearly
unstable.

We start with a basic state comprising unbanded flow on
the high shear branch. In a flat geometry this is linearly
stable; solid line in Fig. 2, left. In contrast, in a curved
device it becomes linearly unstable when the first normal
stress exceeds a critical value, consistent with the onset of a
bulk VTC-like instability; dashed line in Fig. 2, left. The
presence of this instability in a flow state that resides fully
on the high shear branch leads us to expect, in curved flow,
a bulk instability of the VTC kind in the high shear band of
a banded flow. Accordingly, we now turn to the stability
properties of a banded basic state. We start with the flat
case q ¼ 0 before turning to the curved case q > 0.

Shear banded flow in a flat geometry q ¼ 0 is already
known [9] to show an instability of the interface between
the bands, leading to undulations along the interface with
wave vector qz � 2�=Lz. In Ref. [9] we suggested this to
be driven by a jump in normal stress across the interface,
but did not study this in detail. By exploiting in this work
the scaling of the normal stresses with a, we find convinc-
ing evidence that it is indeed driven by the jump �N2 in
second normal stress; Fig. 2, right.

So far we have brought together for the first time in the
same model three instabilities already documented sepa-
rately in the literature: shear banding itself [3], a VTC-like
instability of a strongly sheared polymeric material with a
large first normal stress in a curved geometry [2], and the
instability in a flat geometry of an interface between shear
bands with respect to undulations with wave vector in the
vorticity direction [9], driven by the jump in second normal
stress across the interface. Our most significant result,
however, is to report the stability properties of a shear

banded state in two situations not previously studied theo-
retically—in a curved flow cell, and when the high shear
band has large first normal stress—thereby demonstrating
a bulk VTC-like instability of the high shear band.
As shown in Fig. 3, curvature suppresses the interfacial

instability just discussed, dragging the weakly positive
mode for q ¼ 0 below the axis !� ¼ 0 (top two panels).
For large enough curvature q or first normal stress N1h �
1=ð1� aÞ in the high shear band, though, we find a
crossover (interchange of dispersion maxima) to a differ-
ent instability: now of the bulk VTC kind in the high
shear band. At the interchange, the wavelength of the
fastest growing mode switches (inset of Fig. 3, top right)
from � � 1, consistent with interfacial instability [9], to
� � 1=8, consistent [2] with a VTC instability in a bulk
flow phase of width �0:3, for this applied shear rate. In
Fig. 3 (bottom) we map out an entire phase diagram in the
plane of curvature q versus first normal stress scaling
variable N1h � 1=ð1� aÞ. The boundary of the VTC in-
stability is seen to scale as q� ð1� aÞ � N�1

1 � _��2,

consistent with the known criterion for the same instability
in unbanded flow [2]. The same scaling is also seen for the
boundary of the interfacial instability.
Gray-scale snapshots on the ultimate attractor for each

kind of instability are shown in Fig. 4. The stress signals of
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FIG. 2. Left: Maximum growth rate for an unbanded base state
just into the high shear branch versus the first normal stress
scaling variable 1=ð1� aÞ for flat and curved cells: ðq; _�ð1�
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try, showing interfacial instability. Also shown is the jump in
second normal stress (dotted line).
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the rightmost ones appear chaotic, consistent with the
observation of complex roll cell dynamics in Ref. [6].

In conclusion, for large first normal stresses and cell
curvature we have demonstrated a bulk instability of the
VTC kind in a high shear band. For small curvatures we
find an undulatory instability of the interface between the
bands, as in Ref. [9] for q ¼ 0. An important additional
contribution has been to show this interfacial instability to
be (i) driven by the jump in second normal stress across the
interface and (ii) suppressed by curvature.

The diffusive Johnson-Segalman model is highly phe-
nomenological, taking no explicit account of underlying
molecular mechanisms (reptation, reaction, etc.). It further
assumes a Newtonian high shear branch, contrary to ex-
periment [8] (although instability prevents most studies
reaching this branch). It should not, therefore, be seen as
microscopically faithful to any given fluid, but rather as a
minimal approach to capturing shear banding, and (cru-
cially) to allowing the strength of the normal stress com-
ponents in the bands to be tuned, giving insight to the
mechanisms that drive the two separate instabilities.

Experimental data for normal stresses N1ð _�Þ, N2ð _�Þ are
rare in micelles, making it difficult to estimate N1h in our
Fig. 3 (bottom), although the data of Ref. [13] suggest
N1h ¼ Oð103Þ. We hope that this Letter will help stimulate
further measurements of this quantity.

The main aim of this Letter has been to capture and
rationalize two different experimental observations of roll
cells in shear banded flows [6,8]. Nghe et al. [8] demon-
strated an instability leading to rolls stacked along the
vorticity direction z in a rectilinear microchannel. The
lack of cell curvature suggests these experiments to corre-
spond to (the pressure driven equivalent of [14]) our cal-
culations for q ¼ 0 in Fig. 3 (bottom), and so to a linear
interfacial instability. Indeed, it has long been known that
flows with parallel streamlines are linearly stable with
respect to bulk perturbations, although a nonlinear (sub-
critical) instability cannot be ruled out [15].

Lerouge et al. [6] demonstrated roll cells stacked along z
in a Couette cell of curvature q � 0:08, and estimated their
high shear band to satisfy the criterion for bulk VTC
instability, which would correspond to the top right of
Fig. 3 (bottom). Indeed, the complex dynamics of
Ref. [6] suggest VTC, although the smallest observed
wavelength � 0:5–1 might perhaps also be consistent
with interfacial instability. To resolve this, it would be
interesting to perform a series of experiments vertically
scanning Fig. 3 (bottom) with a family of flow cells of
different curvatures (q � 0:05–0:5 for Couette, q ¼ 0 in
planar flow). While the stability gap in Fig. 3 apparently
covers an impractical range of q, smaller values of the
viscosity � (not uncommon experimentally but difficult to
access numerically) do narrow this, as noted above, such
that it might indeed be spanned by a family of cells.
Other open questions include the interaction of these roll

cells with unstable modes of wave vector in the flow
direction [16] and the effect of stick-slip dynamics at the
wall on this rich array of hydrodynamic phenomena.
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¼ 1:91. Left: Interfacial instability in a flat
cell q ¼ 0 with 1=ð1� aÞ ¼ 1:43. Others left to right: Bulk
instability of the VTC kind in the high shear band for a large
value of the first normal stress scaling variable 1=ð1� aÞ ¼ 416,
for curvatures q ¼ 0:115; 0:13; 0:16.
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