11 research outputs found
Correlation between Microstructure and Chemical Composition of Zinc Oxide Gas Sensor Layers and Their Gas-Sensitive Properties in Chlorine Atmosphere
In this article, we present results concerning the impact of structural and chemical properties of zinc oxide in various morphological forms and its gas-sensitive properties, tested in an atmosphere containing a very aggressive gas such as chlorine. The aim of this research was to understand the mechanism of chlorine detection using a resistive gas sensor with an active layer made of zinc oxide with a different structure and morphology. Two types of ZnO sensor layers obtained by two different technological methods were used in sensor construction. Their morphology, crystal structure, specific surface area, porosity, surface chemistry and structural defects were characterized, and then compared with gas-sensitive properties in a chlorine-containing atmosphere. To achieve this goal, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL) methods were used. The sensing properties of obtained active layers were tested by the temperature stimulated conductance method (TSC). We have noticed that their response in a chlorine atmosphere is not determined by the size of the specific surface or porosity. The obtained results showed that the structural defects of ZnO crystals play the most important role in chlorine detection. We demonstrated that Cl2 adsorption is a concurrent process to oxygen adsorption. Both of them occur on the same active species (oxygen vacancies). Their concentration is higher on the side planes of the zinc oxide crystal than the others. Additionally, ZnO sublimation process plays an important role in the chlorine detection mechanism
Concentration-Dependent Emission of Annealed Sol-Gel Layers Incorporated with Rhodamine 19 and 6G as the Route to Tunable High-Temperature Luminescent Materials
The sol-gel technology allows for the development of materials for nonlinear optics and photonics through the synthesis of multifunctional ceramic materials. Although the nature of the amorphous matrix allows the material to be doped with a large amount of the active components without quenching, it may affect the spectroscopic characteristics of the dye (e.g., result in a shift of absorption and emission peaks with drying time, presumably with a change of concentration). This study presents the material (SiO2 impregnated with organic dyes—Rhodamine 6G and 19) with tunable emissions obtained by the authors upon annealing at different temperatures within the range of 100–300 °C. Possible observed effects were discussed based on spectroscopic properties and thermal studies of the synthesized material. Concerning annealing at different temperatures, an effect on concentration was observed. At the same time, a longer heating process at 300 °C revealed a protective function of sol-gel-derived silica for the organic dye; the longer heating did not cause any further significant changes in the dye’s emission, which indicates the preservative role of the sol-gel layers. Furthermore, etching tests of thin layers were conducted, resulting in smooth side edges of the waveguide. The tests have shown that it is possible to use dye-doped sol-gel layers as active components in photonics platforms
Multifunctional Nanocomposite Cellulose Fibers Doped in Situ with Silver Nanoparticles
This paper presents a method for the preparation of nanocomposite cellulose fibers doped with silver nanoparticles (AgNPs), as well as the effect of silver nanoparticles on the structure and properties of fibers. The fibers were obtained by an environmentally friendly method using N-Methylmorpholine N-oxide (NMMO) as a solvent, in a non-polluting closed system. Doping with silver nanoparticles was carried out as a direct (in situ) reduction of Ag+ ions in the presence of a stabilizing agent during the preparation of the spinning solution. SEM images of the surface and cross section of the fibers showed that the distribution of nanoparticles in the fibers’ volume was uniform. The fibers exhibited very good antibacterial properties in relation to Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Candida albicans. Flammability analysis showed that the fibers were subjected to a one-stage combustion process and that the silver nanoparticles reduced the heat release rate (HRR) of the fibers by 36%. TG studies showed that the modification of cellulose fibers with silver nanoparticles promoted the formation of mill scale in the combustion of fibers, which was directly related to the reduction of flammability. Tests of the electrical properties showed that the linear resistance of cellulose fibers containing 3 wt % silver was 108 Ω/cm
The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers
The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous solution (PAN/PANI blended), and the second involved the synthesis of polyaniline directly in the spinning solution (PAN/PANI in situ). The obtained fibers were characterized by the methods: X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC). Analysis of the results showed strong interactions between the nitrile groups of polyacrylonitrile and polyaniline in the PAN/PANI in situ fibers. The results of mechanical strength tests indicated that the performance of the PAN/PANI mixture significantly improved the mechanical parameters of polyaniline, although these fibers had a weaker strength than the unmodified PAN fibers. The fibers obtained as a result of the addition of PANI to PAN were dielectric, whereas the PANI-synthesized in situ were characterized by a mass-specific resistance of 5.47 kΩg/cm2
Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties
A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer. ZnO microrods were synthesized on ZnO nanoparticles (NPs) as a nucleus centers by chemical bath deposition (CBD) process. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) indicated that wurzite ZnO microrods were obtained on every sample. Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Liquid Absorption Capacity (LAC) analysis indicate that the amount and structure of antibacterial layer is dependent on roughness and wettability of textile surface. The rougher and more hydrophilic is the material, the more ZnO were deposited. All studied textiles show significant bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A possible mechanism and difference in sensitivity between Gram-negative and Gram-positive bacteria to ZnO is discussed. Considering that antibacterial activity of ZnO is caused by Reactive Oxygen Species (ROS) generation, an influence of surface to volume ratio and crystalline parameters is also discussed
Gallic Acid Based Black Tea Extract as a Stabilizing Agent in ZnO Particles Green Synthesis
In this work, zinc oxide particles (ZnO NPs) green synthesis with the application of black tea extract (BT) is presented. A thorough investigation of the properties of the extract and the obtained materials was conducted by using Fourier transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-MS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and quadrupole mass spectroscopy (QMS). The obtained results indicated that the amount of used BT strongly influenced the morphology, chemical, and crystalline structure of the obtained particles. The investigation demonstrated that the substance present in black tea (BT) extract, which was adsorbed on the ZnO surface, was in fact gallic acid. It was found that gallic acid controls the crystallization process of ZnO by temporarily blocking the zinc cations. Additionally, these organic molecules interact with the hydroxide group of the precipitant. This blocks the dehydration process stabilizing the zinc hydroxide forms and hinders its transformation into zinc oxide. Performed measurements indicated that obtained ZnO particles have great antioxidant and antimicrobial properties, which are significantly correlated with ZnO–gallic acid interactions