473 research outputs found

    Vortex line in a neutral finite-temperature superfluid Fermi gas

    Full text link
    The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within the context of self-consistent Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated and the shift in the critical temperature due to the presence of the vortex is analyzed. The gapless excitations inside the vortex core are studied and a scheme to detect these states and thus the presence of the vortex is examined. The numerical results are compared with various analytical expressions when appropriate.Comment: 8 pages, 6 embedded figure

    Green's Function for Nonlocal Potentials

    Get PDF
    The single-particle nuclear potential is intrinsically nonlocal. In this paper, we consider nonlocalities which arise from the many-body and fermionic nature of the nucleus. We investigate the effects of nonlocality in the nuclear potential by developing the Green's function for nonlocal potentials. The formal Green's function integral is solved analytically in two different limits of the wavelength as compared to the scale of nonlocality. Both results are studied in a quasi-free limit. The results illuminate some of the basic effects of nonlocality in the nuclear medium.Comment: Accepted for publication in J. Phys.

    Diffraction and quasiclassical limit of the Aharonov--Bohm effect

    Full text link
    Since the Aharonov-Bohm effect is the purely quantum effect that has no analogues in classical physics, its persistence in the quasiclassical limit seems to be hardly possible. Nevertheless, we show that the scattering Aharonov-Bohm effect does persist in the quasiclassical limit owing to the diffraction, i.e. the Fraunhofer diffraction in the case when space outside the enclosed magnetic flux is Euclidean, and the Fresnel diffraction in the case when the outer space is conical. Hence, the enclosed magnetic flux can serve as a gate for the propagation of short-wavelength, almost classical, particles. In the case of conical space, this quasiclassical effect which is in principle detectable depends on the particle spin.Comment: 12 pages, minor changes, references update

    Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover

    Full text link
    Theoretical predictions for the BCS-BEC crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of 6^6Li. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean field. Excellent agreement with experimental results is obtained. Theoretical predictions for the zero-temperature chemical potential and gap at the unitarity limit are also found to compare extremely well with Quantum Monte Carlo simulations and with recent experimental results.Comment: 4 pages, 3 eps figure

    Non-Hermitian Rayleigh-Schroedinger Perturbation Theory

    Full text link
    We devise a non-Hermitian Rayleigh-Schroedinger perturbation theory for the single- and the multireference case to tackle both the many-body problem and the decay problem encountered, for example, in the study of electronic resonances in molecules. A complex absorbing potential (CAP) is employed to facilitate a treatment of resonance states that is similar to the well-established bound-state techniques. For the perturbative approach, the full CAP-Schroedinger Hamiltonian, in suitable representation, is partitioned according to the Epstein-Nesbet scheme. The equations we derive in the framework of the single-reference perturbation theory turn out to be identical to those obtained by a time-dependent treatment in Wigner-Weisskopf theory. The multireference perturbation theory is studied for a model problem and is shown to be an efficient and accurate method. Algorithmic aspects of the integration of the perturbation theories into existing ab initio programs are discussed, and the simplicity of their implementation is elucidated.Comment: 10 pages, 1 figure, RevTeX4, submitted to Physical Review

    Comment on ``the Klein-Gordon Oscillator''

    Get PDF
    The different ways of description of the S=0S=0 particle with oscillator-like interaction are considered. The results are in conformity with the previous paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p

    Phase transitions in open quantum systems

    Get PDF
    We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter α\alpha being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value αcrit\alpha_{crit} of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.Comment: 28 pages, 22 Postscript figure

    Violation of pseudospin symmetry in nucleon-nucleus scattering: exact relations

    Get PDF
    An exact determination of the size of the pseudospin symmetry violating part of the nucleon-nucleus scattering amplitude from scattering observables is presented. The approximation recently used by Ginocchio turns out to underestimate the violation of pseudospin symmetry. Nevertheless the conclusion of a modestly broken pseudospin symmetry in proton-208Pb scattering at EL=800MeV remains valid.Comment: 8 pages, 2 figure

    Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States

    Get PDF
    We discuss the implications of a doorway state model for parity mixing in compound nuclear states. We argue that in order to explain the tendency of parity violating asymmetries measured in 233^{233}Th to have a common sign, doorways that contribute to parity mixing must be found in the same energy neighbourhood of the measured resonance. The mechanism of parity mixing in this case of nearby doorways is closely related to the intermediate structure observed in nuclear reactions in which compound states are excited. We note that in the region of interest (233^{233}Th) nuclei exhibit octupole deformations which leads to the existence of nearby parity doublets. These parity doublets are then used as doorways in a model for parity mixing. The contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE

    Dirac equation from the Hamiltonian and the case with a gravitational field

    Full text link
    Starting from an interpretation of the classical-quantum correspondence, we derive the Dirac equation by factorizing the algebraic relation satisfied by the classical Hamiltonian, before applying the correspondence. This derivation applies in the same form to a free particle, to one in an electromagnetic field, and to one subjected to geodesic motion in a static metric, and leads to the same, usual form of the Dirac equation--in special coordinates. To use the equation in the static-gravitational case, we need to rewrite it in more general coordinates. This can be done only if the usual, spinor transformation of the wave function is replaced by the 4-vector transformation. We show that the latter also makes the flat-space-time Dirac equation Lorentz-covariant, although the Dirac matrices are not invariant. Because the equation itself is left unchanged in the flat case, the 4-vector transformation does not alter the main physical consequences of that equation in that case. However, the equation derived in the static-gravitational case is not equivalent to the standard (Fock-Weyl) gravitational extension of the Dirac equation.Comment: 27 pages, standard LaTeX. v2: minor style changes, accepted for publication in Found. Phys. Letter
    • …
    corecore