32,103 research outputs found
A Model for Selecting the Most Cost-Effective Pressure Control Device for More Sustainable Water Supply Networks
Pressure Reducing Valves (PRV) have been widely used as a device to control pressure at nodes in water distribution networks and thus reduce leakages. However, an energy dissipation takes place during PRV operation. Thus, micro-hydropower turbines and, more precisely, Pump As Turbines (PAT) could be used as both leakage control and energy generating devices, thus contributing to a more sustainable water supply network. Studies providing clear guidelines for the determination of the most cost-effective device (PRV or PAT) analysing a wide database and considering all the costs involved, the water saving and the eventual power generation, have not been carried out to date. A model to determine the most cost-effective device has been developed, taking into account the Net Present Value (NPV). The model has been applied to two case studies: A database with 156 PRVs sites located in the UK; and a rural water supply network in Ireland with three PRVs. The application of the model showed that although the investment cost associated to the PRV installation is lower in the majority of cases, the NPV over the lifespan of the PAT is higher than the NPV associated with the PRV operation. Furthermore, the ratio between the NPV and the water saved over the lifespan of the PAT/PRV also offered higher values (from 6% to 29%) for the PAT installation, making PATs a more cost-effective and more sustainable means of pressure control in water distribution networks. Finally, the development of less expensive turbines and/or PATs adapted to work under different flow-head conditions will tip the balance toward the installation of these devices even further
Geometric Algebras and Extensors
This is the first paper in a series (of four) designed to show how to use
geometric algebras of multivectors and extensors to a novel presentation of
some topics of differential geometry which are important for a deeper
understanding of geometrical theories of the gravitational field. In this first
paper we introduce the key algebraic tools for the development of our program,
namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the
theory of its deformations leading to metric geometric algebras Cl(V,G) and
some special types of extensors. Those tools permit obtaining, the remarkable
golden formula relating calculations in Cl(V,G) with easier ones in Cl(V,G_{E})
(e.g., a noticeable relation between the Hodge star operators associated to G
and G_{E}). Several useful examples are worked in details fo the purpose of
transmitting the "tricks of the trade".Comment: This paper (to appear in Int. J. Geom. Meth. Mod. Phys. 4 (6) 2007)
is an improved version of material appearing in math.DG/0501556,
math.DG/0501557, math.DG/050155
The U(1) phase transition on toroidal and spherical lattices
We have studied the properties of the phase transition in the U(1) compact
pure gauge model paying special atention to the influence of the topology of
the boundary conditions. From the behavior of the energy cumulants and the
observation of an effective \nu -> 1/d on toroidal and spherical lattices, we
conclude that the transition is first order.Comment: LATTICE98(gauge
The mass and environmental dependence on the secular processes of AGN in terms of morphology, colour, and specific star-formation rate
Galaxy mass and environment play a major role in the evolution of galaxies.
In the transition from star-forming to quenched galaxies, Active galactic
nuclei (AGN) have also a principal action. However, the connections between
these three actors are still uncertain. In this work we investigate the effects
of stellar mass and the large-scale environment (LSS), on the fraction of
optical nuclear activity in a population of isolated galaxies, where AGN would
not be triggered by recent galaxy interactions or mergers. As a continuation of
a previous work, we focus on isolated galaxies to study the effect of stellar
mass and the LSS in terms of morphology (early- and late-type), colour (red and
blue), and specific star formation rate (quenched and star-forming). To explore
where AGN activity is affected by the LSS we fix the stellar mass into low- and
high-mass galaxies. We use the tidal strength parameter to quantify their
effects. We found that AGN is strongly affected by stellar mass in 'active'
galaxies (namely late-type, blue, and star-forming), however it has no
influence for 'quiescent' galaxies (namely early-type, red, and quenched), at
least for masses down to . In relation to the LSS, we
found an increment on the fraction of SFN with denser LSS in low-mass star
forming and red isolated galaxies. Regarding AGN, we find a clear increment of
the fraction of AGN with denser environment in quenched and red isolated
galaxies, independently of the stellar mass. AGN activity would be 'mass
triggered' in 'active' isolated galaxies. This means that AGN is independent of
the intrinsic property of the galaxies, but on its stellar mass. On the other
hand, AGN would be 'environment triggered' in 'quiescent' isolated galaxies,
where the fraction of AGN in terms of sSFR and colour increases from void
regions to denser LSS, independently of its stellar mass.Comment: 14 pages, 9 figures (11 pages and 6 figures without appendix),
accepted for publication in Astronomy & Astrophysic
Reply to Comment on "Magnetization Process of Single Molecule Magnets at Low Temperatures"
This is the reply to a Comment by I.S.Tupitsyn and P.C.E. Stamp (PRL
v92,119701 (2004)) on a letter of ours (J.F.Fernandez and J.J.Alonso, PRL v91,
047202 (2003)).Comment: 2 LaTeX pages, 1 eps figure. Submitted to PRL on 20 October 200
- …