304 research outputs found

    GNNUERS: Fairness Explanation in GNNs for Recommendation via Counterfactual Reasoning

    Full text link
    In recent years, personalization research has been delving into issues of explainability and fairness. While some techniques have emerged to provide post-hoc and self-explanatory individual recommendations, there is still a lack of methods aimed at uncovering unfairness in recommendation systems beyond identifying biased user and item features. This paper proposes a new algorithm, GNNUERS, which uses counterfactuals to pinpoint user unfairness explanations in terms of user-item interactions within a bi-partite graph. By perturbing the graph topology, GNNUERS reduces differences in utility between protected and unprotected demographic groups. The paper evaluates the approach using four real-world graphs from different domains and demonstrates its ability to systematically explain user unfairness in three state-of-the-art GNN-based recommendation models. This perturbed network analysis reveals insightful patterns that confirm the nature of the unfairness underlying the explanations. The source code and preprocessed datasets are available at https://github.com/jackmedda/RS-BGExplaine

    Search for Extreme Energy Cosmic Rays with the TUS orbital telescope and comparison with ESAF

    Get PDF
    The Tracking Ultraviolet Setup (TUS) detector was launched on April 28, 2016 as a part of the scientific payload of the Lomonosov satellite. TUS is a pathfinder mission for future space-based observation of Extreme-Energy Cosmic Rays (EECRs, E > 5x1019 eV) with experiments such as K-EUSO. TUS data offer the opportunity to develop strategies in the analysis and reconstruction of the events which will be essential for future space-based missions. During its operation, TUS has detected about 80 thousand events which have been subject to an offline analysis to select among them those that satisfy basic temporal and spatial criteria of EECRs. A few events passed this first screening. In order to perform a deeper analysis of such candidates, a dedicated version of ESAF (EUSO Simulation and Analysis Framework) code as well as a detailed modelling of TUS optics and detector are being developed

    Quality of images with toric intraocular lenses

    Get PDF
    Purpose: To objectively evaluate the image quality obtained with toric intraocular lenses (IOLs) when misaligned from the intended axis. Setting: University Eye Clinic and the Department of Industrial and Information Engineering, University of Trieste, Trieste, Italy. Design: Experimental study. Methods: An experimental optoelectronic test bench was created. It consisted of a high-resolution monitor to project target images and an artificial eye. The system simulates the optical and geometric characteristics of the human eye with an implanted toric IOL. A 3.00 diopters corneal astigmatism was simulated. Images reproduced by the optical system were captured according to different IOL axis positions. The quality of each image was analyzed using the visual information fidelity (VIF) criterion. The VIF reduction was calculated at each IOL rotational step. Results: A 5-degree IOL axis rotation from the intended position determined a decay in the image quality of 7.03%. Ten degrees of IOL rotation caused an 11.09% decay of relative VIF value. For a 30-degree rotation, the VIF decay value was 45.85%. Finally, the image decay with no toric correction was 56.70%. Conclusions: The more the objective quality of the image decays progressively, the further the axis of the IOL is rotated from its intended position. The reduction in image quality obtained after 30 degrees of toric IOL rotation was less than 50% and after 45 degrees, the image quality was the same as that of no toric correction

    Prostatic fiducial markers implantation by transrectal ultrasound for adaptive image guided radiotherapy in localized cancer: 7-years experience

    Get PDF
    Objective: we present our 7-years' experience with fiducial gold markers inserted before Image-Guided Radiotherapy (IGRT) focusing on our echo-guided technique reporting early and late complications. Material and methods: 78 prostate cancer (PCA) patients who underwent fiducial markers placement for adaptive IGRT (period 2007-2014) were selected. Mean patient age was 75 years (range 60-81), mean PSA 7.8 ng/ml (range 3.1-10), clinical stage < T3, mean Gleason Score 6.4 (range 6-7). We recorded early and late complications. Maximum distance between the Clinical Target Volume (CTV) and Planning Target Volume (PTV) was assessed for each direction and the mean PTV reduction was estimated. Results: we describe in details our echo-guided technique of intraprostatic gold fiducial markers insertion prior to adaptative IGRT. We report rare early toxicity (5-7% grade 1-2), a mean PTV reduction of 37% and a very low late toxicity (only 3.4% bladder G3 and 8% rectal G2 side effects). Conclusion: Our technique of fiducial gold markers implantation for adaptative IGRT is safe and well-tolerated and it resulted helpful to reduce CTV-PTV margin in all cases; the effects on clinical practice seem significant in terms of late toxicity but further investigations are needed with longer follow-up
    corecore