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Abstract— We apply the model predictive control (MPC)
strategy in an industrial setting, specifically for controlling the
temperature of Combi Oven Professional Appliances. The pro-
posed method takes into account input and output constraints,
as well as the presence of multiple sources of disturbance.
The workflow includes identifying and validating a model of
the cell temperature and incorporating disturbance models.
MPC is implemented using a state-space formulation. The
proposed method shows significant energy saving and tracking
error reduction with respect to the current oven control;
its effectiveness has been demonstrated through several tests
carried out on a professional oven.

I. INTRODUCTION

The food processing industry, from small to highly tech-
nological business, is facing increasing impact from the
expanding fast food market, heightened consumer awareness
regarding food quality, the trend of ordering various cuisines
online, and more stringent government regulations. The en-
ergy consumption is a critical factor that is taken into account
when running a restaurant service and during the operation
of a professional kitchen. Since the oven appliance is the
prominent part of a kitchen, then as a result, the performance
of the oven in regulating the temperature of the food is
involved and plays a very crucial role in the professional
kitchen.

In most cases, the temperature of industrial oven sys-
tems is regulated by proportional-integral-derivative (PID)
algorithms [13] [14] because they are easy to implement.
However, in some cases there are considerable time delays
and unpredictable disturbances that affect the performance
of these algorithms.

When these time delays are present, the effect of control
actions and disturbances takes time to be seen on the con-
trolled variables. In most cases this time is unknown before-
hand. To solve these problems, various approaches have been
used, based, e.g., on the Smith predictor (SP), fuzzy logic
controller, neural networks (NN), and the combination of
these. Among them, the fuzzy PID algorithm [15] shows an
improvement in terms of robustness by setting the controller
parameters online. However, it takes a long time to build
fuzzy rules for all possible cases and the performance of
the regulation depends to a large extent on user practical
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experience. The NN algorithms [16] [17] exhibit a strong
adaptation to changing control objectives even though, in
contrast, they have to deal with a computational burden
execution online and neural training work. Therefore, they
pose some challenges for onboard implementation.

The requirements we need in this field are to predict
the behaviour of the professional appliance and to supply
the optimal amount of energy, in order to have a smarter,
better and sustainable solution for this kind of food service
machine. And this means making sure that the cooking points
of the professional equipment meet the economic objectives,
taste and quality of food, along with the physical limitations
of supplied energy when it is needed. A possible approach
for the problem at hand is model predictive control (MPC).
Since it is inherently multiple-input multiple-output (MIMO)
and takes explicitly into account the input/output constraints,
it has been successfully applied to thermal processes as well
as to systems with large inertia and time-delay. Generally,
MPC algorithms rely on methods such as Dynamic Matrix
Control (DMC) method and Generalized Predictive Control
(GPC) method, wherein they are based on linear input/output
models, such as impulse or step response models and transfer
functions [1], [2]. In the most current research literature,
MPC is formulated almost always in the state space [5].
For all the aforementioned reasons, a Model Predictive
Control technique based on state-space model is our research
and development direction for industrial oven systems. In
this work, we apply MPC to control the temperature of a
professional oven, after identifying and validating a model,
and taking into account input and output constraints, as well
as various sources of disturbance.

The paper is organized as follows. Section II presents
the considered plant and its principal functionalities. Section
III gives some details about control requirements. Section
IV describes our work flow from the prototyping, the mod-
eling and the MPC formulation. Section V conducts the
simulation, experiments and discusses the results on the
Oven performance to further validate the effectiveness of the
proposed method. Final conclusions are drawn in Section VI.

II. APPLIANCE DESCRIPTION

The research was carried out by using the Skyline Combi
Oven as a test plant. This kind of oven cooks inside the
cell with hot air by convection, steam or a combination of
both. When the convection function is selected, dry heat is
circulated around the oven by a fan. In the steam function,
a boiler generates the steam which flows onto the cavity
through the difference of pressure produced by the fan.
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III. TEMPERATURE CONTROL SPECIFICATIONS

According to the plant analysis, the following challenges
were found:

• All oven control actuators are subject to power con-
straints, for example, the heating power control is one
directional where only positive values can be provided.

• The continuous change of the working point that a
cooking process achieves in order to execute a recipe.

• The temperature transition time should be as quick as
possible. In daily use practices, the ideal temperature
setpoint is only reached after a certain time but the
safety requirement [3] must be achieved in a short time.

• A minimal temperature overshoot should be considered.
The food degradation becomes an important issue when
the temperature in the oven cell rises higher [4] than the
required setpoint.

• The presence of multiple sources of disturbance that
cause the temperature fluctuations. For example, some
disturbances are: periodic changes in the direction of the
fan rotation speed, the way the food molecules absorb
energy, the steam generation resulting from cooking the
food and the flow of steam produced by the boiler.

As a result, the average temperature deviates from the ideal
temperature setpoint. The aforementioned reasons motivate
us to introduce a disturbance rejection control to compensate
for the disturbances when they are present.

IV. MPC DESIGN FLOW

Our implemented Model Predictive Control (MPC) design
flow consists of the following path: first, it starts from the
prototype building to reproduce the behaviour of the Combi
Oven appliance and to monitor the control and measures in
real time of the actual working conditions. Then from there,
the identification experiment, without load inside the cell,
is executed by applying a pseudorandom binary sequence at
the power input and collecting the data. Subsequently, the
Subspace Identification method is used to obtain a math-
ematical model of the plant. This procedure is completely
off-line. Next, the MPC strategy is established with the per-
formance index (cost function) and the constraints setup of
the plant. After this, a custom quadratic program (QP) solver
is implemented in order to be suitable for the computational
capabilities of our electronic hardware. Finally, the tests are
carried out and the results are validated.

A. Prototyping

The approach that was followed is the On-Target Rapid
Prototyping. A prototype was built using pre-existing sen-
sors, actuators and the actual mechanical structure. We
substituted the electronic part with a programmable logic
controller (PLC) and dedicated I/O modules as shown in
Figures 1 and 2. This approach allowed us to explore
and evaluate the MPC control algorithm by monitoring all
variables during the operation.

Fig. 1: Front view of the prototype Skyline Combi Oven.

Fig. 2: Detail of PLC used for Rapid Control Prototyping.

B. Modeling

The goal was to build a “control-oriented” discrete-time
model which is used to predict the free response of the plant.
To obtain this type of model, it is necessary to evaluate the
different construction possibilities. From the physical point
of view, we need:

• the dynamic characterization of components whose de-
velopment is expensive in terms of time and resources;

• the integration of these characterizations in a model,
resulting in a non-linear model.

Therefore, these pose some difficulties for on-board imple-
mentation such as computational time and memory. To over-
come these barriers, the subspace identification method [6]
was implemented with our dataset to estimate a black-
box linear model of the Combi Oven. Since this model is
linear, it makes the calculation of the best input relatively
straightforward. This model is formulated in state space and

2



Fig. 3: The measured temperature (red) and the heating power percentage
(blue) enforced as a PRBS for identification purposes.

Fig. 4: The upper part shows the measured (red) and the estimated
temperature (black); the lower part shows the error signal between them.

has the following form:

x(k + 1) = Ax(k) +Bu(k) + w(k) (1a)
y(k) = Cx(k) +Du(k) + v(k), (1b)

where y, x, u, w and v are the system outputs, states, inputs,
state noises, and output measurement noises, respectively.
A, B, C and D are system matrices with appropriate
dimensions. In our open-loop identification experiment, we
used the concept of persistency of excitation [7], where the
input signal used is a pseudo-random binary signal (PRBS)
generated by using a shift register [8] of order 10. Its
period is equal to M = 210 − 1. Therefore, the duration

Fig. 5: Correlation among the residuals (upper part) and covariance between
the residuals and past inputs (lower part). The red dashed lines represent
the lower and the upper limits of the 99% confidence interval.

of the experiment was chosen less than M , in order to
obtain sufficient information from the system and to ensure
that the correlation function of this pseudo-random signal
resembles the correlation function of a white random noise.
In addition, the identification experiment was carried out
with the empty oven cell. The signals were sampled using a
constant sampling interval. This implied that the power input
and the temperature output data were recorded in discrete
time as shown in Figure 3, where the clock period was
equal to one second. Next, the identified 3rd order model was
tried out on experimental data taken from a test without the
load inside the cell and with a different feedback coefficient
configuration of the shift register used for generating input
power. This data was not used in the previous identification
experiment. The test presented a good estimate with fewer
residues than the measurement of the plant temperature
as shown in Figure 4 . Furthermore, from Figure 5 , the
conventional residual analysis can be observed in which
Re is the correlation among the residuals themselves [7] to
exhibit the residuals that are uncorrelated. Wherein, Reu is
the covariance between residuals and past inputs [7] to reveal
the independence between them. The Re and Reu are inside
the confidence interval of 99%. Then, this identified linear
discrete-time model is descriptive enough to capture the most
significant dynamics of the plant when the oven is empty. It is
also simple enough to solve the MPC optimization problem.
The model (1) can be augmented with additional states [9] to
represent the effect of the disturbances, previously mentioned
III at the input and output of the system. Specifically, it
was considered a ramp-shaped load disturbance entering the
system whose model is given as:

xr(k + 1) = Arxr(k) (2a)
dr(k) = Crxr(k) (2b)

Ar =

[
1 0
h 1

]
(2c)

Cr =
[
0 1

]
(2d)

where h is the sampling time. On the other hand, the
disturbance that affects the temperature measurement be-
haves persistently and it is related to the frequency ω1 of
the fan rotation change. The amplitudes of the first three
harmonics have a greater weight and vary according to the
load distribution in the cell. Thus, we used the following
model:

xsi(k + 1) = Asixsi(k) (3a)
dsi(k) = Csixsi(k) (3b)

Asi =

[
cos(ωih) − sin(ωih)
sin(ωih) cos(ωih)

]
(3c)

Csi =
[
1 0

]
(3d)

with i = 1, 2, 3

To guarantee zero steady state errors, the MPC controller is
designed to contain an integral action. To achieve the integral
action we use a disturbance observer with the extended
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system model that is formulated as follows:


x(k + 1)
dr(k + 1)
ds1(k + 1)
ds2(k + 1)
ds3(k + 1)

 =



A BCr 0 . . . 0

0 Ar 0
...

... 0 As1 0
...

... 0 As2 0
0 . . . . . . 0 As3




x(k)
dr(k)
ds1(k)
ds2(k)
ds3(k)


+

[
B
0

]
u(k) + w(k)

ye(k) =
[
C 0 Cs1 Cs2 Cs3

]


x(k)
dr(k)
ds1(k)
ds2(k)
ds3(k)


+Du(k) + v(k) (4)

The notation ye(k) stands for the extended output. The main
idea is to use an observer based on this extended system (4)
to estimate the input and output disturbances d, and to use
them in the MPC control law.

C. MPC Problem Formulation

Our implemented MPC algorithm is formulated based on
the state-space model. Therefore, it uses the dynamic model
of the oven (4), a cost function J over the receding horizon
and quadratic programming (QP) algorithm to minimize J ,
taking explicitly into account the constraints. The following
convex quadratic cost function used is given by

J =

Hp∑
i=Hw

∥∥ŷe(k + i|k)− r(k + i|k)
∥∥2
Q

+

Hu−1∑
i=0

∥∥∆u(k + i|k)
∥∥2
R

(5)

where the variables ŷe are the predicted controlled output,
r is the reference trajectory and where ∆u(k) = u(k) −
u(k − 1). The parameter Hp is the prediction horizon, Hu

is the control horizon, Hw is the “window” parameter and
finally Q and R are constant weighting matrices. All of
these parameters affect the behaviour of the closed-loop
system composed by the plant and predictive controller.
In (5) the weighted squared Euclidean norm is defined as
||x||2P = xTPx while the notation (k+i|k) indicates that the
involved variables depend on the conditions at time k. The
MPC controller uses the model (4) to predict the behaviour
of the plant, starting at the current time k, advancing on
each point k+ i until reaching the future prediction horizon
Hp. In addition, the cost function penalizes deviations of the
predicted controlled outputs ŷe from a reference trajectory r
and changes of the incremental input vector ∆u.

We imposed the following linear inequality constraints on
control variables u(k) and constrained outputs y(k)e at k-th

Fig. 6: The upper part of the figure shows the temperature regulation
obtained by simulation; the blue signal in the lower part is the control
input behaviour (step disturbance added @600s).

step:

∆umin ≤∆u(k) ≤ ∆umax (6a)
umin ≤u(k) ≤ umax (6b)
ymin ≤ŷe(k) ≤ ymax (6c)

The problem (5) was reformulated taking into account
the constraints (6) as the following constrained optimization
problem [10]:

min
∆U

J = ∆U(k)TH∆U(k)−GT∆U(k) (7a)

s.t. Ω∆U(k) ≤ ω (7b)

where ∆U is the control increment vector over the control
horizon Hu. The Hessian matrix H is positive-definite be-
cause we imposed Q ⪰ 0 and R ≻ 0. The vector G depends
on the tracking error between the future target trajectory and
the free response of the system. The single inequality (7b)
is the compact form of the inequalities (6a), (6b) and (6c)
with Ω that represents a suitable selection of ∆U and ω is
a function of the constraint limits, previous control variables
u(k−1) and the current system states x(k). For more details
on the mathematical steps, refer to [10].

Problem (7) is a convex optimization problem since
we have the positive definite matrix H and the constraints
(7b) that are linear inequalities. To solve this mathematical
problem, a numerical optimization algorithm that is based
on the Active-Set method [11] [12] was developed in order
to be used in our prototype embedded system with limited
hardware resources and to be executed in real time [18].

V. RESULTS

A. SIMULATION RESULTS

To validate the controller parameter setting and verify the
feasibility of the proposed controller, numerical simulations
were realized in the Matlab/Simulink development environ-
ment with the identified model as a plant. The characteriza-
tion of the air flow generated by the fan is not considered
in the simulation for the reasons aformentioned in Section
IV-B. However, in the real use of the machine, it is present,
thus this part will be dealt with in the experimental tests.

There are many adjustable parameters in the index perfor-
mance (5) that must be set. Their tuning were based largely
on experience gained from the simulations. The elements of
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TABLE I: MPC control parameters values.

Ts Hp Hu Hw Q R

1s 30 11 11 diag(10) diag(0.01)

TABLE II: MPC control constraints values.

∆umin ∆umax umin umax ymin ymax

%/s %/s % % °C °C

-20 80 0 100 0 250

R were decreased to obtain a fast response to compensate
for the disturbances. On the other hand, the elements of Q
were increased to penalize the tracking errors. The prediction
horizon Hp was set greater than two times the number of
states n to ensure that there are no “delayed modes” inside
the controller which might emerge in the future [10]. The
control horizon Hu and window parameter Hw were set to
the number of states n, in order to have enough time to drive
the controlled variable y to the reference r. Since there is
a certain delay between the supply of heating energy and
the observation of its effect, the parameter Hw is set at a
value greater than one to avoid immediate penalizations of
the deviations between the variables ŷ and r.

Firstly, the cavity temperature is simulated using the model
previously identified. The temperature is set to change from
20°C to 180°C and there is a step disturbance at 600
seconds, wherein, the simulation result is shown in Figure 6.
Furthermore, the controller parameters after tuning are shown
in Table I and the sampling interval of the simulation is 1
second. It can be observed that the proposed algorithm can
track the temperature setting value with a small overshoot
and almost with a zero steady state error. Meanwhile, the
control variation ∆u and u are kept within the range of the
given constraints in Table II .

Fig. 7: Comparison between simulation and experiment results: on the top,
the reference tracking performed by simulation (green) and prototype (red)
is shown; on the bottom there is the comparison between the two control
inputs.

B. EXPERIMENTAL RESULTS

After the tuning through simulation, the model predictive
control has been implemented and evaluated in practice. We
have implemented a hand-tailored QP algorithm written in

TABLE III: The indicators for the control performance evaluation.

Performance Current Proposed
index Control Control

Energy consumption (kJ) 28769 24702
Rise Time (s) 495 263
Overshoot (%) 5.55 2.11

Steady State error (°C) 3.75 0.65

the Matlab language, taking into account the computational
and memory limitations of our embedded systems [18].
Furthermore, we have used the Embedded Coder which gen-
erates the C code from the Simulink diagrams, the Stateflow
chart and the Matlab functions to our PLC platform. From
Figure 7, the simulation and the prototype test can be
compared. This test was carried out with a fixed rotation
speed of the fan and the oven cell was empty. The control
strategy in its complexity shows that it is able to describe
the dynamics of the controlled plant. It also shows a good
similarity with the simulation. Another comparison that can
be made is between the performance of the MPC control
and the current oven control. In Figures 8 and 9, the test
that was carried out is for a setpoint of 180°C with a full
load and the change of direction of the rotation of the fan
is active. In the tests, there was a preheating phase without
the load, in which the desired temperature was reached and
then the load was introduced. In these tests we considered
only the first 45 minutes after loading the cell.

As shown from the table above III, the new control
consumes 14% less than the current control. It also takes
about 230 seconds less to reach the setpoint. Also, the
load disturbances attenuation with an increase of 82% can
be seen when the oven is running in a steady state with
the constant setpoint for a long period of time. Therefore,
the new control action reduces spikes in the temperature
profile, which significantly improves the average temperature
regulation.

In Figures 11, 10 and 9, the performance of the MPC
controller for a setpoint of 180°C with different loads are
illustrated. The load we used to carry out the tests are trays
made of “SAE 304” stainless steel. They are sealed on top
with a lid of the same material. This lid is perforated to let
the steam out. Each tray weighs around 500 grams and it was
filled with 4 liters of water at room temperature. The tests
were executed with the setpoint temperature higher than the
boiling temperature of water to produce steam. According
to the Figures 11, 10 and 9, it can be concluded that
the temperature reference is reached while taking advantage
of all the available input power and always considering
its physical limitations. This is imposed in advance by the
linear constraints on the control variable. Thus, a very short
temperature rise time is achieved even despite different loads.
While the command is within the saturation band, the control
manages to compensate not only the energy absorption of the
load and the heat loss but also the disturbance on the tem-
perature measurement. With or without the presence of the
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Fig. 8: The current oven control performance with full load (10 trays):
the blue line is the temperature setpoint while the red line is the oven
temperature signal; in black the power signal is shown.

Fig. 9: The results of a test done with the proposed method (full load -
10 trays); the blue line is the temperature setpoint while the red line is the
oven temperature signal; the lower part depicts the power command (black)
and the fan speed (blue).

load in the tests, the control performance exhibits a similar
and minute error in steady state. In this way, the quality and
uniformity of cooking is guaranteed. Finally, the performance
of this controller indicates that the tuning parameters are
quite insensitive to the different test conditions.

VI. CONCLUSIONS

This work designed a model predictive controller for
temperature control of the professional oven cavity. The
proposed controller design flow adopts the subspace system
identification method to identify the parameters of the model
in state space formulation of the oven. It can be aug-
mented with additional states to represent the disturbances

Fig. 10: The results of a test done with the proposed method (half load -
5 trays); the blue line is the temperature setpoint while the red line is the
oven temperature signal; the lower part depicts the power command (black)
and the fan speed (blue).

Fig. 11: The results of a test done with the proposed method (no load);
the blue line is the temperature setpoint while the red line is the oven
temperature signal; the lower part depicts the power command (black) and
the fan speed (blue).

present at the input and output of the system. The optimal
command is found by solving a quadratic problem with
linear constraints in real-time. The obtained performance of
the new control system is highly satisfactory in regards to
temperature homogeneity in the cell, setpoint deviation and
energy consumption.
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