4,133 research outputs found

    Magneto-acoustic waves in sunspots from observations and numerical simulations

    Full text link
    We study the propagation of waves from the photosphere to the chromosphere of sunspots. From time series of cospatial Ca II H (including its line blends) intensity spectra and polarimetric spectra of Si I 1082.7 nm and He I 1083.0 nm we retrieve the line-of-sight velocity at several heights. The analysis of the phase difference and amplification spectra shows standing waves for frequencies below 4 mHz and propagating waves for higher frequencies, and allows us to infer the temperature and height where the lines are formed. Using these observational data, we have constructed a model of sunspot, and we have introduced the velocity measured with the photospheric Si I 1082.7 nm line as a driver. The numerically propagated wave pattern fits reasonably well with the observed using the lines formed at higher layers, and the simulations reproduce many of the observed features. The observed waves are slow MHD waves propagating longitudinally along field lines.Comment: proceedings of GONG 2010/SOHO 24 meeting, June 27 - July 2, 2010, Aix-en-Provence, Franc

    Detection of emission in the Si i 1082.7 nm line core in sunspot umbrae

    Full text link
    We analyze spectropolarimetric sunspot umbra observations taken in the near-infrared Si i 1082.7 nm line taking NLTE effects into account. The data were obtained with the GRIS instrument installed at the German GREGOR telescope. A point spread function (PSF) was constructed using prior Mercury observations with GRIS and the information provided by the adaptive optics system of the GREGOR telescope. The data were then deconvolved from the PSF using a principal component analysis deconvolution method and were analyzed via the NICOLE inversion code. The Si i 1082.7 nm line seems to be in emission in the umbra of the observed sunspot after the effects of scattered light are removed. We show how the spectral line shape of umbral profiles changes dramatically with the amount of scattered light. Indeed, the continuum levels range, on average, from 44% of the quiet Sun continuum intensity to about 20%. The inferred levels are in line with current model predictions and empirical umbral models. Current umbral empirical models are not able to reproduce the emission in the deconvolved umbral Stokes profiles. The results of the NLTE inversions suggests that to obtain the emission in the Si i 1082.7 nm line, the temperature stratification should first have a hump located at about log tau -2 and start rising at lower heights when moving into the transition region. This is, to our knowledge, the first time the Si i 1082.7 nm line is seen in emission in sunspot umbrae. The results show that the temperature stratification of current umbral models may be more complex than expected with the transition region located at lower heights above sunspot umbrae. Our finding might provide insights into understanding why the sunspot umbra emission in the millimeter spectral range is less than that predicted by current empirical umbral models

    Signatures of the impact of flare ejected plasma on the photosphere of a sunspot light-bridge

    Full text link
    We investigate the properties of a sunspot light-bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15655 \AA\ with the GREGOR Infrared Spectrograph (GRIS), narrow-band intensity images sampling the Fe I 6173 \AA\ line with the GREGOR Fabry-P\'erot Interferometer (GFPI), and intensity broad band images in G-band and Ca II H band with the High-resolution Fast Imager (HiFI). All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data from the Solar Dynamics Observatory (SDO). The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated to the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge.Comment: Accepted for publication in A&

    Aspects of thermal leptogenesis in braneworld cosmology

    Full text link
    The mechanism of thermal leptogenesis is investigated in the high-energy regime of braneworld cosmology. Within the simplest seesaw framework with hierarchical heavy Majorana neutrinos, we study the implications of the modified Friedmann equation on the realization of this mechanism. In contrast with the usual leptogenesis scenario of standard cosmology, where low-energy neutrino data favors a mildly strong washout regime, we find that leptogenesis in the braneworld regime is successfully realized in a weak washout regime. Furthermore, a quasi-degenerate light neutrino mass spectrum is found to be compatible with this scenario. For an initially vanishing heavy Majorana neutrino abundance, thermal leptogenesis in the brane requires the decaying heavy Majorana neutrino mass to be M1 > 10^10 GeV and the fundamental five-dimensional gravity scale 10^12 < M5 < 10^16 GeV, which corresponds to a transition from brane to standard cosmology at temperatures 10^8 < Tt < 10^14 GeV.Comment: 7 pages, 3 figures, a few comments and references added. Final version to appear in Phys. Rev.

    Gravitational baryogenesis in Gauss-Bonnet braneworld cosmology

    Full text link
    The mechanism of gravitational baryogenesis, based on the CPT-violating gravitational interaction between the derivative of the Ricci scalar curvature and the baryon-number current, is investigated in the context of the Gauss-Bonnet braneworld cosmology. We study the constraints on the fundamental five-dimensional gravity scale, the effective scale of B-violation and the decoupling temperature, for the above mechanism to generate an acceptable baryon asymmetry during the radiation-dominated era. The scenario of gravitational leptogenesis, where the lepton-number violating interactions are associated with the neutrino mass seesaw operator, is also considered.Comment: 8 pages, 3 figures, final version to appear in Phys. Rev.

    Multi-layer study of wave propagation in sunspots

    Full text link
    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I 10827 and the He I 10830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line-of-sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed non-linearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I 10830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where non-linearities start to become very important.Comment: Accepted by The Astrophysical Journa

    Bulk viscosity in a cold CFL superfluid

    Get PDF
    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in JCA

    Spatially Resolved Outflows in a Seyfert Galaxy at z = 2.39

    Full text link
    We present the first spatially resolved analysis of rest-frame optical and UV imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert active galactic nucleus (AGN). Proximity to a natural guide star has enabled high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame optical diagnostic emission lines, which exhibit an underlying broad component with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line ratios place the outflow robustly in the region of the ionization diagnostic diagrams associated with AGN. This unique opportunity - combining gravitational lensing, AO guiding, redshift, and AGN activity - allows for a magnified view of two main tracers of the physical conditions and structure of the interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon. By analyzing the spatial extent and morphology of the Ly-alpha and dust-corrected H-alpha emission, disentangling the effects of star formation and AGN ionization on each tracer, and comparing the AGN induced mass outflow rate to the host star formation rate, we find that the AGN does not significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap

    Statistical Mechanics of Unbound Two Dimensional Self-Gravitating Systems

    Full text link
    We study, using both theory and molecular dynamics simulations, the relaxation dynamics of a microcanonical two dimensional self-gravitating system. After a sufficiently large time, a gravitational cluster of N particles relaxes to the Maxwell-Boltzmann distribution. The time to reach the thermodynamic equilibrium, however, scales with the number of particles. In the thermodynamic limit, NN\to\infty at fixed total mass, equilibrium state is never reached and the system becomes trapped in a non-ergodic stationary state. An analytical theory is presented which allows us to quantitatively described this final stationary state, without any adjustable parameters
    corecore