1,503 research outputs found

    Global Diffusion in a Realistic Three-Dimensional Time-Dependent Nonturbulent Fluid Flow

    Full text link
    We introduce and study the first model of an experimentally realizable three-dimensional time-dependent nonturbulent fluid flow to display the phenomenon of global diffusion of passive-scalar particles at arbitrarily small values of the nonintegrable perturbation. This type of chaotic advection, termed {\it resonance-induced diffusion\/}, is generic for a large class of flows.Comment: 4 pages, uuencoded compressed postscript file, to appear in Phys. Rev. Lett. Also available on the WWW from http://formentor.uib.es/~julyan/, or on paper by reques

    An accelerator mode based technique for studying quantum chaos

    Get PDF
    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wavepackets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp. to the figures) to aid clarity; accepted for publication in Physical Review A (due out on January 1st 2003

    Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection

    No full text
    This study investigates the effects of aerosol on clouds, precipitation, and the organization of trade wind cumuli using large eddy simulations (LES). Results show that for this shallow-cumulus-under-stratocumulus case, cloud fraction increases with increasing aerosol as the aerosol number mixing ratio increases from 25 (domain-averaged surface precipitation rate ∼0.65 mm day−1) to 100 mg−1 (negligible surface precipitation). Further increases in aerosol result in a reduction in cloud fraction. It is suggested that opposing influences of aerosol-induced suppression of precipitation and aerosol-induced enhancement of evaporation are responsible for this nonmonotonic behavior. Under clean conditions (25 mg−1), drizzle is shown to initiate and maintain mesoscale organization of cumulus convection. Precipitation induces downdrafts and cold pool outflow as the cumulus cell develops. At the surface, the center of the cell is characterized by a divergence field, while the edges of the cell are zones of convergence. Convergence drives the formation and development of new cloud cells, leading to a mesoscale open cellular structure. These zones of new cloud formation generate new precipitation zones that continue to reinforce the cellular structure. For simulations with an aerosol concentration of 100 mg−1 the cloud fields do not show any cellular organization. On average, no evidence is found for aerosol effects on the lifetime of these clouds, suggesting that cloud fraction response to changes in aerosol is tied to the frequency of convection and/or cloud size

    Aerosols\u27 influence on the interplay between condensation, evaporation and rain in warm cumulus cloud

    Get PDF
    A numerical cloud model is used to study the influence of aerosol on the microphysics and dynamics of moderate-sized, coastal, convective clouds that develop under the same meteorological conditions. The results show that polluted convective clouds start their precipitation later and precipitate less than clean clouds but produce larger rain drops. The evaporation process is more significant at the margins of the polluted clouds (compared to the clean cloud) due to a higher drop surface area to volume ratio and it is mostly from small drops. It was found that the formation of larger raindrops in the polluted cloud is due to a more efficient collection process

    Marginal Coral Populations: the Densest Known Aggregation of Pocillopora in the Galápagos Archipelago is of Asexual Origin

    Get PDF
    Coral populations at distributional margins frequently experience suboptimal and variable conditions. Recurrent El Niño-Southern Oscillation (ENSO) warming events have caused extensive mortality of reef-building corals in the Eastern Pacific, and particularly impacted branching pocilloporid corals in the Galápagos Islands. Pocillopora spp. were previously more common and formed incipient reefs at several locations in the archipelago but now occur as scattered colonies. Here, we report an unusually concentrated aggregation of colonies and evaluate their current genetic diversity. In particular we focus on a large population of 1614 live Pocillopora colonies found in a volcanic lagoon along the southern shore of Isabela Island. Forty seven colonies were sampled, primarily using a spatially explicit sampling design, and all colonies belonged to Pocillopora mitochondrial open reading frame lineage type 3a. Typing of additional Pocillopora samples (n = 40) from three other islands indicated that this stand is the only known representative of type 3a in the Galápagos Islands. The Isabela Pocillopora type 3a colonies harbored Symbiodinium ITS-2 clade C1d. Multilocus genotyping (n = 6 microsatellites) capable of resolving individual clones indicated that this stand is monogenotypic and thus the high density of colonies is a result of asexual reproduction, likely via fragmentation. Colony size distribution, while an imperfect measure, suggested the stand regrew from remnant colonies that survived the 1997/98 ENSO event but may postdate the 1982/83 ENSO. The community of Pocillopora colonies at Isabela is of particular ecological value due to its high density and support of associated organisms such as fish and benthic invertebrates. The Galapagos Pocillopora corals will continue to provide insights into the genetic structure and population dynamics of marginal coral populations

    A Trace Formula for Products of Diagonal Matrix Elements in Chaotic Systems

    Full text link
    We derive a trace formula for ∑nAnnBnn...δ(E−En)\sum_n A_{nn}B_{nn}...\delta(E-E_n), where AnnA_{nn} is the diagonal matrix element of the operator AA in the energy basis of a chaotic system. The result takes the form of a smooth term plus periodic-orbit corrections; each orbit is weighted by the usual Gutzwiller factor times ApBp...A_p B_p ..., where ApA_p is the average of the classical observable AA along the periodic orbit pp. This structure for the orbit corrections was previously proposed by Main and Wunner (chao-dyn/9904040) on the basis of numerical evidence.Comment: 8 pages; analysis made more rigorous in the revised versio
    • …
    corecore