1,610 research outputs found

    On algebraic equations satisfied by hypergeometric correlators in WZW models. II

    Get PDF
    We give an explicit description of "bundles of conformal blocks" in Wess-Zumino-Witten models of Conformal field theory and prove that integral representations of Knizhnik-Zamolodchikov equations constructed earlier by the second and third authors are in fact sections of these bundles.Comment: 32 pp., amslate

    Functional realization of some elliptic Hamiltonian structures and bosonization of the corresponding quantum algebras

    Full text link
    We introduce a functional realization of the Hamiltonian structure on the moduli space of P-bundles on the elliptic curve E. Here P is parabolic subgroup in SL_n. We also introduce a construction of the corresponding quantum algebras.Comment: 20 pages, Amstex, minor change

    The Integrals of Motion for the Deformed W-Algebra Wqt(slN)W_{qt}(sl_N^) II: Proof of the commutation relations

    Full text link
    We explicitly construct two classes of infinitly many commutative operators in terms of the deformed W-algebra Wqt(slN)W_{qt}(sl_N^), and give proofs of the commutation relations of these operators. We call one of them local integrals of motion and the other nonlocal one, since they can be regarded as elliptic deformation of local and nonlocal integrals of motion for the WNW_N algebra.Comment: Dedicated to Professor Tetsuji Miwa on the occasion on the 60th birthda

    Gaudin models with irregular singularities

    Get PDF
    We introduce a class of quantum integrable systems generalizing the Gaudin model. The corresponding algebras of quantum Hamiltonians are obtained as quotients of the center of the enveloping algebra of an affine Kac-Moody algebra at the critical level, extending the construction of higher Gaudin Hamiltonians from hep-th/9402022 to the case of non-highest weight representations of affine algebras. We show that these algebras are isomorphic to algebras of functions on the spaces of opers on P^1 with regular as well as irregular singularities at finitely many points. We construct eigenvectors of these Hamiltonians, using Wakimoto modules of critical level, and show that their spectra on finite-dimensional representations are given by opers with trivial monodromy. We also comment on the connection between the generalized Gaudin models and the geometric Langlands correspondence with ramification.Comment: Latex, 72 pages. Final version to appear in Advances in Mathematic

    Geometrical Description of the Local Integrals of Motion of Maxwell-Bloch Equation

    Get PDF
    We represent a classical Maxwell-Bloch equation and related to it positive part of the AKNS hierarchy in geometrical terms. The Maxwell-Bloch evolution is given by an infinitesimal action of a nilpotent subalgebra n+n_+ of affine Lie algebra sl^2\hat {sl}_2 on a Maxwell-Bloch phase space treated as a homogeneous space of n+n_+. A space of local integrals of motion is described using cohomology methods. We show that hamiltonian flows associated to the Maxwell-Bloch local integrals of motion (i.e. positive AKNS flows) are identified with an infinitesimal action of an abelian subalgebra of the nilpotent subalgebra n+n_+ on a Maxwell- Bloch phase space. Possibilities of quantization and latticization of Maxwell-Bloch equation are discussed.Comment: 16 pages, no figures, plain TeX, no macro
    • …
    corecore