217 research outputs found

    Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks

    Full text link
    Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast Multicast System (eMBMS) are the most promising technologies for the delivery of highly bandwidth demanding applications. In this paper we propose a green resource allocation strategy for the delivery of layered video streams to users with different propagation conditions. The goal of the proposed model is to minimize the user energy consumption. That goal is achieved by minimizing the time required by each user to receive the broadcast data via an efficient power transmission allocation model. A key point in our system model is that the reliability of layered video communications is ensured by means of the Random Linear Network Coding (RLNC) approach. Analytical results show that the proposed resource allocation model ensures the desired quality of service constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium - Green Communications Track, to appea

    Urban Microclimate and Traffic Monitoring with Mobile Wireless Sensor Networks

    Get PDF
    Climate is usually defined as the average of the atmospheric conditions over both an extended period of time and a large region. Small scale patterns of climate resulting from the combined influence of topography, urban buildings structure, watercourses, vegetation, are known as microclimates, which refers to a specific site or location. The microclimate scale may be at the level of a settlement (urban or rural), neighborhood, cluster, street or buffer space in between buildings or within the building itself. Specifically, the dispersion and dilution of air pollutants emitted by vehicles is one of the most investigated topics within urban meteorology, for its fundamental impact on the environment affecting cities of all sizes. This issues concern the average and peak values of various air pollutants as well as their temporal trends and spatial variability. The accurate detection of these values might be advantageously exploited by public authorities to better plan the public and private transportation by evaluating the impact on people health, while controlling the greenhouse phenomenon. As the unpredictable nature of a climate variations requires an incessant and ubiquitous sensing,Wireless Sensor Networks (WSNs) represent a key technology for environmental monitoring, hazard detection and, consequently, for decision making (Martinez et al., 2004). A WSN is designed to be self-configuring and independent from any pre-existing infrastructure, being composed of a large number of elementary Sensor Nodes (SNs) that can be large-scale deployed with small installation and maintenance costs. Literature contains several examples of frameworks for evaluating the urban air quality with WSNs, as it is reported in (Santini et al., 2008). In addition, in (Cordova-Lopez et al., 2007) it is addressed the monitoring of exhaust and environmental pollution through the use of WSN and GIS technology. As micro-climate monitoring usually requires deploying a large number of measurement tools, in (Shu-Chiung et al., 2009) it is adopted vehicular wireless sensor networks (VWSNs) approach to reduce system complexity, while achieving fine-grainedmonitoring. Another aspect strictly correlated with microclimate establishment is represented by the ecologic footprint of traffic congestion due to inefficient traffic management. As a consequence, an increasing number of cities are going to develop intelligent transport system (ITS) as an approach to harmonize roads and vehicles in optimized and green paths. ITSs involves several technologies as advanced informatics, data communications and transmissions, electronics and computer control with the aim of real-time traffic reporting and alerting. Such a framework allows remote operation management and self-configuration of traffic flows, as well as

    Atm Switching with Input queueing

    Get PDF

    An efficient high-speed packet switching with shared input buffers

    Get PDF

    A simplified I-Q digital multicarrier demodulator

    Get PDF

    A fast packet switching satellite communication network

    Get PDF

    Improved iterative parallel interference cancellation receiver for future wireless DS-CDMA systems

    Get PDF
    We present a new turbo multiuser detector for turbo-coded direct sequence code division multiple access (DS-CDMA) systems. The proposed detector is based on the utilization of a parallel interference cancellation (PIC) and a bank of turbo decoders. The PIC is broken up in order to perform interference cancellation after each constituent decoder of the turbo decoding scheme. Moreover, in the paper we propose a new enhanced algorithm that provides a more accurate estimation of the signal-to-noise-plus-interference-ratio used in the tentative decision device and in the MAP decoding algorithm. The performance of the proposed receiver is evaluated by means of computer simulations for medium to very high system loads, in AWGN and multipath fading channel, and compared to recently proposed interference-cancellation-based iterative MUD, by taking into account the number of iterations and the complexity involved. We will see that the proposed receiver outperforms the others especially for highly loaded systems
    • …
    corecore