209 research outputs found

    Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method

    Get PDF
    Uptake (or negative flux) of nitrous oxide (N2O)in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 ÎŒg N2O-N m could be achieved for individual soil flux measurements. 1220 mea- surements of N2O flux were made from a variety of UK soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention). Only four of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N2O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not a result of microbiological activity consuming atmospheric N2O

    Nitrous oxide emission sources from a mixed livestock farm

    Get PDF
    The primary aim of this study was to identify and compare the most significant sources of nitrous oxide (N2O) emissions from soils within a typical mixed livestock farm in Scotland. The farm area can be considered as representative of agricultural soils in this region where outdoor grazing forms an important part of the animal husbandry. A high temporal resolution dynamic chamber method was used to measure N2O fluxes from the featureless, general areas of the arable and pasture fields (general) and from those areas where large nitrogen additions are highly likely, such as animal feeding areas, manure heaps, animal barns (features). Individual N2O flux measurements varied by four orders of magnitude, with values ranging from −5.5 to 80,000 ÎŒg N2O-N m−2 h−1. The log-normal distribution of the fluxes required the use of more complex statistics to quantify uncertainty, including a Bayesian approach which provided a robust and transparent method for “upscaling” i.e. translating small-scale observations to larger scales, with appropriate propagation of uncertainty. Mean N2O fluxes associated with the features were typically one to four orders of magnitude larger than those measured on the general areas of the arable and pasture fields. During warmer months, when widespread grazing takes place across the farm, the smaller N2O fluxes of the largest area source – the general field (99.7% of total area) – dominated the overall N2O emissions. The contribution from the features should still be considered important, given that up to 91% of the fluxes may come from only 0.3% of the area under certain conditions, especially in the colder winter months when manure heaps and animal barns continue to produce emissions while soils reach temperatures unfavourable for microbial activity (<5 °C)

    Pyrazolium- versus imidazolium-based ionic liquids: Structure, dynamics and physicochemical properties

    Get PDF
    Ionic liquids (ILs) composed of two different pyrazolium cations with dicyanamide and bis(trifluoromethanesulfonyl)imide anions have been synthesized and characterized by NMR, Kamlet-Taft solvatochromic parameters, conductivity and rheological measurements, as well as ab initio calculations. Density functional calculations for the two pyrazolium cations, 1-butyl-2- methylpyrazolium [bmpz] and 1-butyl-2,3,5-trimethylpyrazolium [bm 3pz], provide a full picture of their conformational states. Homo- and heteronuclear NOE show aggregation motives sensitive to steric hindrance and the anions' nature. Self-diffusion coefficients D for the anion and the cation have been measured by pulsed field gradient spin-echo NMR (PGSE-NMR). The ionic diffusivity is influenced by their chemical structure and steric hindrance, giving the order Dcation > Danion for all of the examined compounds. The measured ion diffusion coefficients, viscosities, and ionic conductivity follow the Vogel-Fulcher-Tammann (VFT) equation for the temperature dependencies, and the best-fit parameters have been determined. Solvatochromic parameters indicate an increased ion association upon going from bis(trifluoromethanesulfonyl)imide to dicyanamide-based pyrazolium salts, as well as specific hydrogen bond donor capability of H atoms on the pyrazolium ring. All of these physical properties are compared to those of an analogous series of imidazolium-based ILs

    Paramagnetic species in catalysis research: A unified approach towards (the role of EPR in) heterogeneous, homogeneous and enzyme catalysis

    Get PDF
    Paramagnetic (open-shell) systems, including transition metal ions, radical intermediates and defect centres, are often involved in catalytic transformations. Despite the prevalence of such species in catalysis, there are relatively few studies devoted to their characterisation, compared to their diamagnetic counterparts. Electron Paramagnetic Resonance (EPR) is an ideal technique perfectly suited to characterise such reaction centres, providing valuable insights into the molecular and supramolecular structure, the electronic structure, the dynamics and even the concentration of the paramagnetic systems under investigation. Furthermore, as EPR is such a versatile technique, samples can be measured as liquids, solids (frozen solutions and powders) and single crystals, making it ideal for studies in heterogeneous, homogeneous and enzyme catalysis. Coupled with the higher resolving power of the pulsed, higher frequency and hyperfine techniques, unsurpassed detail on the structure of these catalytic centres can be obtained. In this Chapter, we provide an overview to demonstrate how advanced EPR methods can be successfully exploited in the study of open-shell paramagnetic reaction centres in heterogeneous, homogeneous and enzymatic catalysts, including heme-based enzymes for use in biocatalysts, polymerisation based catalysts, supported microporous heterogeneous catalytic centres to homogeneous metal complexes for small molecule actions

    Testing Consumer Rationality using Perfect Graphs and Oriented Discs

    Full text link
    Given a consumer data-set, the axioms of revealed preference proffer a binary test for rational behaviour. A natural (non-binary) measure of the degree of rationality exhibited by the consumer is the minimum number of data points whose removal induces a rationalisable data-set.We study the computational complexity of the resultant consumer rationality problem in this paper. This problem is, in the worst case, equivalent (in terms of approximation) to the directed feedback vertex set problem. Our main result is to obtain an exact threshold on the number of commodities that separates easy cases and hard cases. Specifically, for two-commodity markets the consumer rationality problem is polynomial time solvable; we prove this via a reduction to the vertex cover problem on perfect graphs. For three-commodity markets, however, the problem is NP-complete; we prove thisusing a reduction from planar 3-SAT that is based upon oriented-disc drawings

    Spatial variability and hotspots of soil N<sub>2</sub>O fluxes from intensively grazed grassland

    Get PDF
    One hundred N2O flux measurements were made from an area of intensively managed grazed grassland in central Scotland using a high-resolution dynamic chamber method. The field contained a variety of features from which N2O fluxes were measured including a manure heap, patches of decaying grass silage, and areas of increased sheep activity. Individual fluxes varied significantly across the field varying from 2 to 79 000 ÎŒg N2O-N m−2 h−1. Soil samples were collected at 55 locations to investigate relationships between soil properties and N2O flux. Fluxes of N2O correlated strongly with soil NO3- concentrations. Distribution of NO3− and the high spatial variability of N2O flux across the field are shown to be linked to the distribution of waste from grazing animals and the resultant reactive nitrogen compounds in the soil which are made available for microbiological processes. Features within the field such as shaded areas and manure heaps contained significantly higher available nitrogen than the rest of the field. Although these features only represented 1.1% of the area of the field, they contributed to over 55% of the total estimated daily N2O flux
    • 

    corecore