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Abstract. One hundred N2O flux measurements were made

from an area of intensively managed grazed grassland in

central Scotland using a high-resolution dynamic chamber

method. The field contained a variety of features from which

N2O fluxes were measured including a manure heap, patches

of decaying grass silage, and areas of increased sheep ac-

tivity. Individual fluxes varied significantly across the field

varying from 2 to 79 000 µg N2O-N m−2 h−1. Soil samples

were collected at 55 locations to investigate relationships be-

tween soil properties and N2O flux. Fluxes of N2O correlated

strongly with soil NO−3 concentrations. Distribution of NO−3
and the high spatial variability of N2O flux across the field

are shown to be linked to the distribution of waste from graz-

ing animals and the resultant reactive nitrogen compounds in

the soil which are made available for microbiological pro-

cesses. Features within the field such as shaded areas and

manure heaps contained significantly higher available nitro-

gen than the rest of the field. Although these features only

represented 1.1 % of the area of the field, they contributed to

over 55 % of the total estimated daily N2O flux.

1 Introduction

Nitrous oxide (N2O) is the single largest contributor to global

stratospheric ozone depletion (Ravishankara et al., 2009) and

a potent greenhouse gas (GHG). N2O is formed naturally

in soils and aquatic environments, primarily as a by-product

of the microbial processes of nitrification and denitrification

(e.g. Davidson et al., 2000; Wrage et al., 2001). Agricul-

tural activities such as the use of nitrogen fertilisers and live-

stock farming have dramatically altered the natural nitrogen

cycle in agricultural environments resulting in significantly

increased global emissions of N2O since pre-industrial times

(IPCC, 2007). Agriculture is believed to be the largest source

of global anthropogenic N2O emissions with estimates as

high as 80 % of all anthropogenic emissions due directly or

indirectly to agricultural activities (Isermann, 1994; IPCC,

2007).

Large-scale N2O flux estimates for terrestrial sources are

often subject to large and poorly defined uncertainties which

can limit the effectiveness of mitigation efforts in the agricul-

tural sector (e.g. Bouwman et al., 1995; Oenema et al., 2005).

Even estimates of N2O fluxes from agricultural sources at

much finer scales (i.e. the plot and farm scale) can be highly

uncertain. This is predominately caused by the large tempo-

ral and spatial variability of N2O fluxes due to the high het-

erogeneity of soil properties and microbiological processes

(Parkin, 1987; Zhu, J. et al., 2013; Chadwick et al., 2014).

Soil properties which are believed to increase N2O emissions

by influencing the nitrification and denitrification processes

include available nitrogen (in the form of ammonium (NH+4 )

and nitrate (NO−3 )), available organic carbon, oxygen supply

and pH (Bateman and Baggs, 2005; Davidson et al., 2000;

Although it is known that these properties can alter N2O

production in soils, it is still difficult to accurately simulate

the net effect on N2O fluxes from areas (that are often con-

sidered to be homogeneous land cover) such as agricultural

fields used for arable crops and grazing of livestock due to

the heterogeneous nature of microbial populations and nitro-

gen availability in soils (Conen et al., 2000; Jarecki et al.,

2008; Oenema et al., 1997).

The two main flux measurement methods applied on the

field scale for N2O in agricultural areas are the flux chamber

Published by Copernicus Publications on behalf of the European Geosciences Union.
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method and the eddy covariance method (e.g. Jones et al.,

2011; Skiba et al., 2013). Chamber fluxes are measured over

a number of enclosed areas (typically < 1 m2) on a field, and

a mean or median flux estimate is extrapolated to the farm,

field or regional scale: the combination of upscaling with the

large spatial variability of N2O sources often results in very

significant uncertainty when estimating N2O fluxes (Velthof

et al., 1996). The advantage of using the eddy covariance

method is that it can measure and integrate flux data directly

over areas greater than 100 m2 continuously without disturb-

ing the soil or air environment. For large homogeneous areas,

which are well represented by an integrated value of flux, the

eddy covariance approach is ideal, but it does not address the

issue of spatial variability on reported fluxes within the mea-

surement area. Eddy covariance also requires fast, sensitive

equipment that often demands high power supply, and so it

can be an expensive option (Hensen et al., 2013).

In this experiment, a high precision dynamic chamber

method (Cowan et al., 2014) was used to make 100 flux

measurements of N2O from an intensively managed grass-

land field which contained several features associated with

elevated N2O fluxes. Soil NH+4 , NO−3 , total carbon, total ni-

trogen, water filled pore space (WFPS%), bulk density and

pH were recorded from 55 out of 100 flux measurement lo-

cations. The aims of the experiment were (i) to measure the

spatial variability of N2O fluxes at a field scale, (ii) to try to

identify the main drivers of this variability and (iii) to pro-

vide better understanding of how N2O flux estimates from

agricultural soils can be improved.

2 Materials and methods

2.1 Field site

Flux measurements were carried out at an intensively man-

aged grassland field owned by the University of Edinburgh

(55◦52′1.2144′′ N, 3◦12′39.564′′W) (Fig. 1). This 6.78 ha

field contained approximately 140 sheep (a mixture of ewes

and lambs) during the 3-day measurement period between

8 and 10 July 2013. Measurements were made continuously

between 10:00 and 16:00 GMT on these days. This field had

been used to graze predominately sheep for at least the last

decade with regular nitrogen fertiliser application. The field

contained several interesting features that provided the op-

portunity to measure N2O fluxes from soils with a wide range

of properties. The vast majority of the field (98.62 % of the

study area) could be classed as typical grazed grassland in

which sheep were free to roam during the measurement pe-

riod. The sheep had been present on the field for several

months, giving us the opportunity to measure from suspected

hotspots of N2O flux where sheep droppings had collected on

the grass. A drinking trough was situated in a shaded area un-

der several large mature trees with wide leaf coverage at the

north end of the field. The sheep had spent a lot of time in

Figure 1. The locations of 100 flux measurements (markers) made

over a 6.78 ha grazed grassland field using the closed loop dynamic

chamber method (bottom). Details of the high density measurement

areas in the north of the field are expanded (top). Features present

in the field are outlined, including the tree shaded area (Sh), the

two small patches of silage remains (S1 & S2) and the manure heap

(M). The stream runs across the north of the field through the shaded

area.

this shaded area due to the warm weather during the past 2–3

weeks before measurements were made. This behaviour was

observed during recent measurements carried out in adjacent

fields unrelated to this study. Several flux measurements were

made in the shaded area to investigate the effect that the re-

cent increase in sheep density in this area had on N2O flux.

Patches of decayed grass silage were visible in two small

areas of the field. These patches remained after silage bales

had been placed in the fields to feed the sheep over the winter

months. The patches had scarred the grassland leaving small

areas of bare soil, with decayed grass matter still present.

Fluxes from both of these patches were measured during the

experiment. A small running stream crosses the north side of

the field which helped with drainage. Several flux measure-

ments were made from the stream using the dynamic cham-

ber to investigate if it was a significant source of N2O.

One particular area of interest was a large manure heap

which was situated in the north-east corner of the field. This

heap was a semi-permanent feature which had been used to

fertilise a nearby barley field on several occasions. The heap

reached a height of up to 3 m and covered approximately

100 m2 of the field, with a wider perimeter of contaminated

soil. The area of influence of the manure heap contamination

was uncertain due to consistent build up and removal of the

heap over several years. A scarred area around the heap was

visible with no grass present for several metres. The scarred
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grassland was used as an indicator of the area of contami-

nation of the manure heap. Measurements were made on the

heap, from soils near the base of the heap and on the con-

taminated soils surrounding the heap at varying distances to

investigate the spatial variability of this particular feature of

the field.

2.2 Dynamic chamber method

N2O flux measurements were made using a non-steady-state

flow-through (or closed dynamic) chamber system which

circulated air between a flux chamber and a quantum cas-

cade laser (QCL) gas analyser via an air pump (SH-110,

Varian Inc, CA, USA) (for a full description of the system

see Cowan et al., 2014). A compact continuous wave QCL

(CW-QC-TILDAS-76-CS, Aerodyne Research Inc., Biller-

ica, MA, USA) was used to measure gas mixing ratios within

the dynamic chamber system (with a detection limit of ap-

proximately 30 nmol mol−1 s−1 for N2O). The instrument

was secured inside a four wheel drive vehicle to allow mobile

measurements. A diesel generator was kept on a tow trailer

which provided electricity to the system. The chamber was

placed onto circular aluminium collars which were inserted

several centimetres into the soil (on average 5 cm) and al-

most flush to the soil, prior to each measurement. Neoprene

sponge formed an airtight seal between the chamber and the

collar. When used to measure from the stream in the field,

the chamber was held steady in place by hand with the bot-

tom slightly under the surface of the water. Two 30 m lengths

of 3/8 in. ID Tygon® tubing were attached to both the inlet

of the analyser and the outlet of the pump. This provided a

30 m radius from the vehicle in which the chamber could be

placed. A flow rate of approximately 6 to 7 L min−1 was used

between the analyser and the chamber.

Fluxes of N2O were calculated using linear and non-linear

asymptotic regression methods using the HMR package for

the statistical software R (Levy et al., 2011; Pedersen et al.,

2010). Using a mixture of goodness-of-fit statistics and vi-

sual inspection, the regression method that provided the best

fit for the time series of concentration was chosen for each

individual measurement. The rate of change in the concen-

tration of a particular gas was then used to calculate the soil

flux for each measurement according to Eq. (1).

F =
dC

dt0
·
ρV

A
, (1)

where F is gas flux from the soil (µmol m−2 s−1), dC/dt0
is the initial rate of change in concentration with time in

µmol mol−1 s−1, ρ is the density of air in mol m−3, V is the

volume of the chamber in m3 and A is the ground area en-

closed by the chamber in m2.

2.3 Soil sampling and analysis

Fifty-five of the 100 locations from which dynamic cham-

ber measurements were made were selected for soil analy-

sis. From these locations, 5 cm deep soil samples were taken

from inside the chamber collar using a 2 cm wide corer im-

mediately after the flux measurement was completed. These

soils were used to calculate soil pH and available nitrogen

in the form of ammonium (NH+4 ) and nitrate (NO−3 ) via KCl

extraction (see below). Soil cores were taken immediately af-

ter the flux measurement using a sharp metal cutting cylinder

(7.4 cm diameter, 5 cm deep) which was carefully hammered

into undisturbed soil. Samples were used to calculate total

carbon and nitrogen content of the soil, soil moisture con-

tent (via oven drying at 100 ◦C) and WFPS% as well as bulk

density. WFPS% was calculated from the bulk density soil

samples using Eq. (2) (Rowell, 1994).

WFPS%=
Vcont× 100

1−
(
rb
rd

) , (2)

where WFPS% is the percentage of porous volume in the

soil filled by water, Vcont is the volumetric water content of

the soil, rb is the bulk density of the soil in g cm−3 and rd
is the particle density of the soil (assumed as 2.65 g cm−3)

(Rowell, 1994).

KCl extractions were carried out on 15 g un-dried soil

samples (kept frozen until extraction) using 1 mol L−1 KCl

solution. Concentrations of NH+4 and NO−3 were measured

using a Bran+Luebbe AutoAnalyzer (SPX Flow Technology,

Norderstedt, Germany). The mass of available nitrogen in the

soil was calculated using Eq. (3).

N =
C×V

m
, (3)

where N is the mass of nitrogen in the form of NH+4 or NO−3
in grams (per kilogram of soil), C is the concentration of

NH+4 or NO−3 measured in the analysis of KCl extract in

mg L−1, V is the volume of solution in which the soil sample

was mixed with KCl in L andm is the mass of dry soil mixed

with the KCl solution in grams.

3 Results

3.1 Variation in N2O fluxes at the field scale

The 3-day measurement period (8 to 10 July 2013) was very

dry with no rainfall and relatively low soil moisture contents

(ranging from 9 to 50 % WFPS). Daily temperatures were

similar, with mean daytime soils temperatures recorded as

15.7, 16.6 and 15.9 ◦C on the 8, 9 and 10 of July, respec-

tively. Flux measurement locations were chosen using a mix-

ture of a grid approximately 30× 30 m across the field and

a selection of feature areas in which multiple measurements

were made in close proximity (See Fig. 1). Fifty measure-

ments were made on what was considered “normal” grass-

land across the field. This provided an estimate of the spatial

variability of N2O flux across the field without interference
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Figure 2. Fifty flux measurements of N2O were made on grazed

grassland: the sampled locations which contained visible sheep

droppings are represented by the darker bars. Error bars represent

the uncertainty in each flux measurement which was calculated us-

ing a propagation of regression, volume, temperature and pressure

uncertainties (See Cowan et al., 2014).

from the hotspot features. Chamber placement on the grass-

land area included some locations where sheep droppings

were present. These locations were noted during measure-

ments when visible. Fluxes from the grassland followed a

geometric (log-normal) distribution ranging between 2 and

227 µg N2O-N m−2 h−1, with an arithmetic and geometric

mean value of 25 and 13 µg N2O-N m−2 h−1, respectively

(Fig. 2). No negative fluxes of N2O were measured dur-

ing this experiment at any of the locations. Droppings were

present at locations where the two largest fluxes were mea-

sured from the grassland (227 and 132 µg N2O-N m−2 h−1),

although fluxes measured at other locations which contained

droppings were not always larger than those observed on

clear (dropping-free) grassland (Fig. 2).

3.2 Silage and shaded patch fluxes

Two features which were measured in more detail were

patches of the field which contained the remains of decayed

grass silage and a large area shaded by trees in which the

sheep had spent much of their time due to the warm weather.

A total of seven flux measurements were made over two

patches of decayed grass silage (Fig. 3a). Only small residues

of the grass silage were visible, mixed in with the soil in these

areas as the sheep had consumed the majority of it months

before the measurement period. The patches were easily vis-

ible due to the lack of grass on the bare soil where the

silage bales had been left. N2O fluxes measured from these

plots were higher than those measured from the grassland

area. Fluxes varied from 1160 to 13 393 µg N2O-N m−2 h−1

(Fig. 3a). The arithmetic and geometric mean values of these

fluxes were 3745 and 2664 µg N2O-N m−2 h−1, respectively.

Five flux measurements were made in the shaded area in

which the sheep had access to a water trough. These fluxes

varied between 200 and 9600 µg N2O-N m−2 h−1 (Fig. b).

The arithmetic and geometric mean values of these fluxes

were 2983 and 1217 µg N2O-N m−2 h−1, respectively. The

precise area which had been influenced by increased sheep

activity was difficult to measure with certainty, although an

Figure 3. (a) Flux measurements made on patches of decayed grass

silage. Measurements 1–3 were taken from the first patch (referred

as S1 in Fig. 1) and the remaining four were measured from the sec-

ond (referred as S2 in Fig. 1). (b) Flux measurements made from

a shaded area with increased sheep density. The first two of these

measurements were made near the centre of the shaded area. Fluxes

from both features were made during the same 3-day measurement

period between 8 and 10 July 2013. Error bars represent the uncer-

tainty in flux measurement calculated using a propagation of errors

from regression, volume, temperature and pressure.

increased number of animal droppings, clumps of wool and

damp urine patches were visible in this area of the field. The

two measurements made in the centre of the shaded area ap-

peared to contain more animal droppings and emit higher

fluxes, whereas the outer perimeter appeared more similar to

the surrounding grassland area and fluxes were lower. It was

likely that the additional presence of sheep had influenced

N2O production in this area, although the effect of the shade

(on soil moisture content) and a difference in organic mate-

rial composition (due to leaf litter) provided by the tree may

have also contributed.

3.3 Drainage stream fluxes

Flux measurements were made using the chamber from a

stream: nine sampling points were chosen where the stream

was wide enough to fit the chamber onto the surface of the

water with flux values shown in Fig. 4. The stream was ap-

proximately 5 m away from the north edge of the study area.

These measurements of flux were not as reliable as the mea-

surements made on the soil, due to the unavoidable distur-

bance on water pressure and flow caused by the chamber.

These flux estimates can still be used as a rough approxima-

tion of the N2O which is emitted from the stream as it passes

through this field. Fluxes from the stream varied from 1 to

22 µg N2O-N m−2 h−1 with arithmetic and geometric mean

values of 9.5 and 7.1 µg N2O-N m−2 h−1, respectively. These

fluxes were similar in magnitude to some of those measured

from the grassland area, although hotspots were not observed

in the stream, even in areas with higher turbulence in which

de-gassing of N2O would be expected to increase (Reay et

al., 2003). It is not possible to determine the magnitude of

N2O fluxes which may have occurred further downstream

as a result of inputs from the field. The measurements were

Biogeosciences, 12, 1585–1596, 2015 www.biogeosciences.net/12/1585/2015/
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Figure 4. N2O fluxes measured from different locations in a

drainage stream in the grazed grassland field. Hotspots of N2O flux

were not observed in the stream measurements. Uncertainty was

calculated for each measurement, as was done for the fluxes mea-

sured from soils in the field.

made only as an indicator of the fluxes from the stream within

the field area.

3.4 Manure heap fluxes

Ten N2O flux measurements were made directly on top of the

manure heap located on the field at differing heights (0.5 to

3 m). Care was made not to physically disturb the chamber

during measurements to prevent additional gases escaping

from the porous manure surface. Fluxes varied in magnitude

significantly across the heap with measured values ranging

between approximately 660 and 79 000 µg N2O-N m−2 h−1

(Fig. 5). Two of the measurements recorded very high N2O

fluxes exceeding 35 000 µg N2O-N m−2 h−1. No relationship

between the height of the heap and N2O flux was observed

from these measurements. Seven sampling points were taken

near the foot of the heap: fluxes recorded from these locations

showed a similar mixture of very large and comparatively

small fluxes of N2O, varying by up to 3 orders of magnitude,

between 85 and 31 250 µg N2O-N m−2 h−1. Again, no clear

spatial pattern was observed in the fluxes around the heap.

A further six flux measurements were made at distances of

5 to 10 m and five more were made at 10 to 20 m from the

heap. The arithmetic and geometric mean fluxes recorded

from the 5 to 10 m range were 6759 and 1986 µg N2O-

N m−2 h−1, respectively. The arithmetic and geometric mean

fluxes recorded from the 10 to 20 m were 466 and 91 µg N2O-

N m−2 h−1, respectively. These results suggest that the influ-

ence of the manure heap on N2O fluxes decreases dramati-

cally after a distance of approximately 10 m (See Fig. 5).

Figure 5. N2O flux measurements from a semi-permanent manure

heap located on the grassland field. Vertical dashed lines split the

measurements into groups separated by distance from the heap with

the left side of the figure being the nearest and right side the furthest

from heap. The darkest bars in the figure represent measurements

made on top of the actual manure heap. Next are the measurements

made from the base of the heap, then those made 5 to 10 m and 10

to 15 m from the heap.

3.5 Variation in soil properties at the field scale

Soil measurements were made from 55 of the 100 flux mea-

surement locations (Table 1). The majority of these samples

(n= 38) were taken from the grassland area to assess the

natural heterogeneity of the soil throughout the field. The

remaining soil samples were taken from the visible hotspot

features of the field to investigate the causes of elevated N2O

emissions (n= 17).

The most variable of the soil properties across the grass-

land area were the concentrations of the available reactive

nitrogen in the form of NH+4 and NO−3 (see Table 1). Loca-

tions with elevated NH+4 also generally recorded higher NO−3
concentrations, although this relationship was not consistent

at all locations (R2
= 0.56). Soil samples taken from patches

of decayed grass silage and the shaded area indicated that

these small areas had significantly greater concentrations of

NH+4 and NO−3 (p < 0.001) compared to the grassland area.

Reactive nitrogen concentrations in soils from the perimeter

of the manure heap also showed wide variations, with some

extremely large (2.2 g N kg−1) and small (0.1 g N kg−1) val-

ues being measured (Table 1).

Total carbon and nitrogen content of the soil from the

grassland area showed less variation than the reactive nitro-

gen content, with a small number of elevated outlier val-

ues. The ratio of carbon to nitrogen content of the soils

(12 : 1) was consistent across the measurement locations

(R2
= 0.94). Total soil carbon and nitrogen concentrations

from the shaded area and silage remains were similar in mag-

nitude to the grassland area measurements. The manure heap

perimeter was the exception to this, presenting some very

www.biogeosciences.net/12/1585/2015/ Biogeosciences, 12, 1585–1596, 2015



1590 N. J. Cowan et al.: Spatial variability and hotspots of soil N2O fluxes

Table 1. Summary of relevant soil properties of all 55 soil measurements made during flux measurements. Soil samples were taken from

inside the chamber area immediately after flux measurements were completed. The mean values and range (in brackets) of measurements

from each variable within the field are included in the table.

Feature Soil

samples

Area

(m2)

NH+
4

(g N kg−1)

NO−
3

(g N kg−1)

Total carbon

(g C kg−1)

Total nitrogen

(g N kg−1)

pH WFPS

(%)

Bulk density

(g cm−3)

Grass 38 66861 0.060

(0.008–0.745)

0.017

(0.001–0.198)

60.269

(43.458–103.707)

4.708

(3.368 –9.494)

5.63

(4.74–6.62)

24.7

(8.9 –36.7)

0.754

(0.566–0.968)

Silage

remains

5 36 0.247

(0.037–0.934)

0.161

(0.046–0.243)

77.010

(44.252–118.652)

5.872

(3.779–8.501)

6.42

(5.21–8.28)

42.8

(38.0–50.0)

0.848

(0.667–1.061)

Shaded area 3 210 0.287

(0.037–0.489)

0.087

(0.009 –0.239)

51.841

(9.678–105.96)

4.277

(0.835–9.178)

7.38

(6.1–3.18)

33.6

(24.2–44.3)

0.953

(0.833–1.079)

Stream 0 183 NA NA NA NA NA NA NA

Manure heap 0 102 NA NA NA NA NA NA NA

Manure heap

perimeter

7 a 0.987

(0.089–2.175)

0.103

(0.002–0.587)

216.996

(107.652–354.828)

18.750

(8.045–34.099)

8.33

(6.97–9.41)

22.8

(14.1–31.9)

0.423

(0.172–0.846)

Manure

perimeter

(5–10 m)

1 b 0.036 0.398 52.346 5.440 6.00 33.6 0.955

Manure

perimeter

(10–15 m)

1 406 0.008 0.002 111.563 9.641 7.21 10.7 0.792

NA: No samples recorded. a As Manure heap. b Total manure perimeter area of influence estimated as 406 m.

high concentrations of carbon and nitrogen. Total carbon and

nitrogen content of the soils around the manure heap var-

ied from small concentrations similar to the grassland soil

(8 and 107 g C kg−1) to concentrations as large as 34 and

355 g C kg−1 (Table 1).

Soil pH varied little between most of the measurement

locations in the grassland area with the majority of the

grazed field confidently estimated at pH levels of 5.6± 0.34

(n= 38), in agreement with measurements made in similar

managed grazed fields in this area. Soil pH from the silage re-

mains and tree shaded area was generally more alkaline (pH

6.9± 1.5) than from the grassland area. The soils from the

manure heap perimeter were highly alkaline (pH 8.3± 0.85)

(Table 1).

WFPS% values across all measurement locations in the

field ranged between 9 and 50 % with a mean value of

26.5 %. The bulk density of the soil in the field with the ex-

ception of the manure heap perimeter ranged between 0.6

and 1.1 g cm−3 with a mean value of 0.8 g cm−3. Due to the

heterogeneous nature of soils there were several outliers for

each of the soil properties measured across the field (Table 1).

3.6 Correlation between soil properties and N2O flux

Multiple linear regression was used to investigate the rela-

tionships between the soil properties presented in Table 1

(also soil porosity) and N2O flux. Due to the wide ranging

and uneven distribution of values measured for both N2O

flux and soil properties, the common logarithm (hereafter re-

ferred to as log10) of several of these measurements (N2O

flux, NH+4 , NO−3 , total carbon and total nitrogen content) was

used for the multiple linear regression. Correlations of soil

properties were carried out with multiple linear regression

analysis using the statistical software R. The soil properties

from all of the features in the field were processed together

as one group (n= 55).

Linear regression was carried out firstly using all of the

measured soil properties for each of the fits. After the ini-

tial fit, the properties which were not statistically significant

(p > 0.1) were removed and the fit was run again using only

the significant values (See Table 2). Concentrations of NH+4
in soils were found to correlate well with pH and total car-

bon and nitrogen (R2
= 0.64; Fig. 6a). High total carbon and

nitrogen contents were indicative of an increased presence of

total organic carbon (TOC) in the soils.

Concentrations of NO−3 correlated strongest with TOC,

NH+4 total nitrogen and WFPS% present in the soil

(R2
= 0.77; Fig. 6b). NO−3 concentrations were presumed

to be indicative of microbial nitrification activity in the soil

as it is the primary product of this process. Fluxes of N2O

(log10(N2O)) correlated strongly with NO−3 , pH and WFPS%

(R2
= 0.86; Fig. 6c). The soil property with the most signifi-

cant correlation with N2O flux was NO−3 (See Table 2).

3.7 Interpolation of N2O fluxes at a field scale

The simplest way to estimate the total daily N2O flux from

the field during the measurement period is to combine the

relevant area and mean flux recorded for each of the fea-

tures of the field. Due to the uneven distribution of flux mag-

nitude and the many large hotspots of flux measured using

the chamber method in this experiment, geometric mean val-

ues are most suitable to determine fluxes across the field

scale (Table 3). Using the geometric mean values, an esti-

mate of 47.7 g N2O-N d−1 was emitted from the field site

during the measurement period (see Table 3; 122.5 g N2O-
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Table 2. Multiple linear regression correlation of soil properties and

N2O flux as plotted in Fig. 6.

Estimate SD p value

(a) Y = log10(NH+
4
)

Intercept −2.56 0.76 < 0.01

pH 0.37 0.05 < 0.001

log10(Carbon g Kg−1) −1.14 0.62 < 0.1

log10(Nitrogen g Kg−1) 1.53 0.79 < 0.1

(b) Y = log10(NO−
3
)

Intercept −402.47 205.04 < 0.1

log10(NH4-N g Kg−1) 0.48 0.130 < 0.001

log10(Carbon g Kg−1) −6.7 0.87 < 0.001

log10(Nitrogen g Kg−1) 8.58 1.13 < 0.001

WFPS% 0.04 0.01 < 0.001

Soil porosity 403.81 205.12 < 0.1

Bulk density g cm−1 154.86 77.39 < 0.1

(c) Y = log10(N2O Flux)

Intercept −4.33 1.29 < 0.01

log10(NH4-N g Kg−1) −0.25 0.20 < 0.1

log10(NO3-N g Kg−1) 0.76 0.10 < 0.001

pH 0.60 0.10 < 0.001

WFPS% 0.04 0.01 < 0.001

Soil porosity 3.85 1.34 < 0.01

N d−1 estimated using the arithmetic mean). The grassland

area of the field which accounts for 98.62 % of the study

area contributed 45 % (21.3 g N2O-N) of the estimated daily

N2O flux from the field. The silage remains and shaded area

contributed 5 and 13 % to the total emissions, respectively.

The manure heap and soils contaminated by the heap con-

tributed a very large 38 % (18 g N2O-N) of the total flux es-

timate which comes from a relatively small area of the field

(0.8 %; Table 3).

4 Discussion

4.1 Variation in N2O fluxes at the field scale

N2O fluxes measured from the grazed grassland area of the

field (excluding the hotspot areas) were highly variable (be-

tween 2 and 227 µg N2O-N m−2 h−1). This is a common phe-

nomenon which is verified in many N2O flux measurement

experiments (e.g. Oenema et al., 1997; Skiba et al., 2013).

Flux magnitude was unpredictable across the grassland and

in some cases varied by 2 orders of magnitude across rela-

tively short distances (< 10 m). Eighty percent of the fluxes

measured from the grassland area were below 30 µg N2O-

N m−2 h−1. Fluxes of N2O comparable to this magnitude

are often measured from grazed fields in different climates

in between fertilisation events (Clayton et al., 1997; Luo et

Figure 6. Multiple linear regression used to identify relationships

between NH+
4

(a), NO−
3

(b) and N2O flux (c) with soil proper-

ties measured during flux measurements from grazed grassland (See

Table 2 for fitting parameters). All 55 soil samples collected from

multiple features present in the field were included in the regression

analysis.

al., 2013; Oenema et al., 1997). The advantage of using the

closed loop dynamic chamber (Cowan et al., 2014) in this

experiment was that the extremely high precision (1 µg N2O-

N m−2 h−1) allowed us to confidently report very low indi-

vidual N2O fluxes across the field and compare these mea-

surements with the relevant soil properties collected from

within the measurement plot at each individual location.

The largest fluxes in the field were measured from the

hotspot features present (up to 79 000 µg N2O-N m−2 h−1).

Fluxes from the shaded area and the silage heap remains

were consistently higher than those measured on the grass-

land area. The shaded area presented an increased number

of sheep, with the resultant increase in animal waste freshly

deposited there (NH+4 ). Fluxes measured from the silage

heap remains were surprisingly high. Decaying plant mat-

ter is known to emit N2O (Hellebrand, 1998), but it is un-

clear whether the emissions from these patches are due to

the additional organic materials present in the soil or to the

increased sheep activity and resultant urine and faeces de-

posits. The larger pH values from the shaded areas, as well

as the manure heap and perimeter suggest that animal waste

was the most likely source of N2O. The combination of large

concentrations of mineral N and organic C in a high pH envi-

ronment are ideal conditions for denitrification (Hofstra and
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Table 3. Geometric mean flux values and estimated cumulative flux from each of the measured features across the field scale. 95 % confidence

intervals (CIs) are included.

Field feature Area Geometric mean flux 95 % CI Cumulative flux 95 % CI

(m2) (µg N2O-N m−2 h−1) (g N2O-N d−1)

Grazed grassland 66861 13.3 (4.7–37.2) 21.3 (7.6–59.8)

Silage remains 36 2663.6 (1220–5815) 2.3 (1.1–5.0)

Shaded area 210 1217.1 (252–5881) 6.1 (1.3–29.6)

Stream 183 7.1 (2.9–17.5) 0 (0.0–0.1)

Manure heap 102 3195.2 (656–15562) 7.8 (1.6–38.1)

Manure perimeter 50 4469.7 (573–34875) 5.4 (0.7–41.9)

Manure outer perimeter 366 550.9 (66–4628) 4.8 0.6

Total 67808 47.7 (12.8–215.1)

Bouwman, 2005; Saggar et al., 2013), which is most proba-

bly the main source of the N2O here.

Fluxes of N2O from the stream were relatively small (1

to 22 µg N2O-N m−2 h−1) compared with those measured

from the rest of the field. Significantly higher fluxes have

been measured from drainage streams at the Bush Estate in

previous experiments (100 to 1000 µg N2O-N m−2 h−1) us-

ing a different methodology (Reay et al., 2003). Dry condi-

tions in the run up to the measurement period had decreased

any leachate from the soils entering the stream. Past exper-

iments have reported N2O flux measurements from agricul-

tural streams similar in magnitude to those made in the sur-

rounding soils (Baulch et al., 2011); however, it is likely that

the N2O fluxes measured in this experiment are lower than

they would have been had the measurements taken place on

a wetter date when drainage waters containing N2O and other

nitrogen compounds from surrounding fields would also have

been entering the stream.

Flux measurements made on and around the manure heap

were on average 420 times higher than the fluxes measured

for the grassland area of the field. The large spatial variabil-

ity of N2O flux observed from the heap was similar to that

of a previous experiment carried out on the farm estate us-

ing static chamber measurements, although reported fluxes

are an order of magnitude smaller in this study (Skiba et

al., 2006). Solid manure heaps are a known large source of

N2O emissions and several studies have estimated emission

factors for such heaps (Amon et al., 2001; Chadwick et al.,

1999; Skiba et al., 2006). Emission factors for manure heaps

are often calculated by volume of stored manure. This im-

plies a large degree of variability, following from the differ-

ent components of animal waste as well as the age of the

waste and how it is stored (Amon et al., 2001). Application

of the manure as fertiliser is often considered in the emis-

sion factor of animal waste as well as storage (Chadwick et

al., 1999, 2011; Velthof et al., 2003). Measurements made in

this experiment did not account for manure volume or cal-

culate an emission factor for the heap; however, this study

highlights that an additional factor may also need to be taken

into account for a more accurate estimate of the emission

factor of solid manure storage (i.e. the legacy emissions of a

manure heap). Very high N2O fluxes (up to 10 825 µg N2O-

N m−2 h−1) were measured from the area around the manure

heap which had become contaminated with the animal waste.

Our data have shown that these areas that are highly en-

riched with available nitrogen compounds, and organic mat-

ter remain after the manure heap has been removed and can

continue to emit N2O for months, as was observed for the

patches of silage heap remains (manure was spread in au-

tumn, 9 months prior to measurements). The high emissions

and lasting effect of these areas may contribute significantly

to the overall emission factor of solid manure heaps and agri-

culture as a whole when the large volumes of animal waste

and storage from livestock farms are considered.

4.2 Correlation between soil properties and N2O flux

High concentrations of NH+4 and NO−3 are known to increase

N2O fluxes from soils as they are the primary nutrients re-

quired for the microbial processes of nitrification and deni-

trification in which N2O is produced and then released into

the atmosphere (Davidson et al., 2000). Animal urine and

droppings are a known source of urea CO(NH2)2 and ammo-

nia (NH3), which are both alkaline and convert to NH+4 in

the presence of water (Freney et al., 1983). A strong positive

correlation between NH+4 concentrations and soil pH was ob-

served across the field (See Table 2). As ruminant (sheep and

cattle) urine is normally slightly alkaline, the increased pH

in the small hotspot areas suggested that increased alkaline

animal waste deposition was the reason for the increase in

pH and resultant available NH+4 in the soil. This relation-

ship has also been observed in other studies (e.g. Haynes and

Williams, 1992). Organic matter in the soils (total C and N)

also correlated with NH+4 concentrations in the soils (See Ta-

ble 2). Mineralisation of animal waste, and plant materials

such as silage, continues to provide NH+4 to soils over ex-

tended periods (Martins and Dewes, 1992; Van Kessel and

Reeves, 2002). All of the N2O flux hotspot features of the

field contained elevated concentrations of NH+4 in the soil
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(See Table 1); however, the concentration of NH+4 was not

found to correlate significantly with N2O fluxes (See Ta-

ble 2).

NO−3 concentrations in the soil correlated well with avail-

able NH+4 and organic matter (See Fig. 6b). The physical

properties of the soil were also influential as NO−3 correlated

strongly with WFPS%, and weakly with bulk density and

soil porosity. Elevated NO−3 concentrations in the soil can

be associated with high rates of nitrification as NO−3 is the

primary product of the nitrification process. The strong cor-

relation between NO−3 with the available NH+4 and organic

material present in the hotspot features of the field provides

strong evidence that elevated concentrations of NO−3 in these

areas are due to nitrification occurring at an increased rate.

The soils measured in this study were relatively dry (9–50 %

WFPS) and therefore more conducive for nitrification than

denitrification (Bateman and Baggs, 2005; Davidson et al.,

2000). However, the presence of organic matter would have

created the necessary anaerobic conditions required for den-

itrification in localised microsites through increased O2 con-

sumption required for organic matter decomposition (Sexs-

tone et al., 1985). No significant correlation between organic

carbon and N2O flux was observed in this data set. Organic

carbon is known to be a limiting factor of denitrification rates

in some soils (McCarty and Bremner, 1992); however, it is

possible that the lack of correlation between carbon and N2O

flux measured in this experiment is due to the abundance of

carbon available in the soils.

Correlation between N2O flux and the measured soil prop-

erties showed that NO−3 concentrations were the most signif-

icant factor (Table 2). The strength of the correlation with

NO−3 and lack of correlation with NH+4 does not explain if

fluxes are predominantly caused by either microbial nitrifi-

cation or denitrification. The presence of NO−3 indicates that

nitrification is definitely happening at these sites; however,

the lack of correlation between NH+4 and N2O flux suggests

that denitrification may be the primary source of emissions.

Another possibility is that conditions are favourable for the

conversion of NH+4 to N2O via microbial nitrifier denitrifica-

tion. In certain conditions, the nitrifier denitrification process

can be responsible for the majority of N2O released from

soils (Kool et al., 2010; Zhu, X. et al., 2013).

The correlations observed between N2O flux and the mea-

sured soil properties in this study indicate that areas in

which the concentrations of available nitrogen compounds

are higher emit more N2O; therefore, available nitrogen input

is likely the primary driver of the spatial variability observed

in N2O flux measurements. This relationship between soil

NO−3 and NH+4 concentrations and N2O flux is also observed

in similar studies (e.g. Turner et al., 2008). Our conclusion

from the correlation analysis is that the high spatial variabil-

ity of N2O flux across the grazed field is primarily due to

the uneven distribution of nitrogen deposition in the form of

animal waste.

There remains a high degree of uncertainty in the relation-

ship between the soil properties and N2O flux. This study

suggests NH+4 , NO−3 and organic matter can be used as prox-

ies to predict where fluxes will be higher in the field; how-

ever, exact fluxes are more difficult to estimate due to the

large number of variables which affect the rates of microbial

processes. Many studies have identified similar soil proper-

ties which affect the rate of N2O emissions from agricul-

tural soils (Butterbach-Bahl et al., 2013; Dobbie and Smith,

2003); however, due to the multiple simultaneous microbial

processes which produce N2O it is difficult to identify a

clear relationship between soil properties and flux. Relation-

ships between N2O flux with temperature, WFPS% and ni-

trogen content in soils are often observed, yet a consistent

method for predicting N2O from agricultural soils based on

soil measurements still eludes researchers (Flechard et al.,

2007; Smith et al., 2003).

Multiple linear regression correlation between flux and

soil properties reported in studies similar to our own pre-

dicted very different significance values for each of the mea-

sured soil properties depending on environmental factors

(Šimek et al., 2006; Turner et al., 2008). In order to advance

our understanding of these processes, more detailed exper-

iments are required in a variety of geographical and envi-

ronmental conditions to better predict the behaviour of mi-

crobial processes in soils with high available nitrogen con-

centrations. Alternatively, a more controlled analysis of in-

dividual soil properties and microbial processes can be ex-

amined under laboratory conditions using similar high preci-

sion chamber methodology. Ideally the use of this equipment

could be paired with 15N labelled nitrogen compounds (such

as urea) and denitrification inhibitors to investigate the bio-

logical mechanisms in N2O production and determine rela-

tionships between these processes and soil properties.

4.3 Interpolation of N2O fluxes at a field scale

Using mean values to interpolate N2O flux at the field scale

results in very high uncertainty values due to the high spa-

tial variability of the N2O fluxes (Table 3). From this exper-

iment, the total daily flux is estimated to be between 12.8

and 215.1 g N2O-N d−1. These high uncertainties highlight

the weakness of the chamber methodologies inability to ac-

count for spatial variability of N2O flux over large areas and

the importance of spatial variability when N2O flux estimates

are made using simple interpolation methods on a large scale.

These results also highlight the need for a better understand-

ing of how agricultural flux measurements are made using

current methodology. Flux chamber placement is vital in un-

derstanding the variability of N2O flux across a field. Without

a good understanding of N2O hotspots and the appropriate

positioning of chambers to include (or exclude) these areas,

chamber methods will not be able to provide effective com-

parable results between experiments.
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Figure 7. Variograms for N2O flux, NO−
3

, NH+
4

and total carbon

measured across the field scale. Log-normal distributions were used

as in Fig. 6 and Table 2. The x axis is the distance between measure-

ment locations in metres and the y axis is the semivariance in all of

the respective measurements made for the entire field.

Other methods of interpolation exist when using chamber

measurements; however, these also struggle to account for

the spatial variability of N2O at larger scales. Fluxes mea-

sured from the field in this experiment showed some pre-

dictability in spatial patterns as fluxes were higher in certain

hotspot locations, although knowledge of these locations is

required to observe this predictability as there was little rela-

tionship observed between N2O flux and distance between

measurements. Hotspot locations which are not visible by

eye are much more difficult to investigate. Variance diagrams

highlight this lack of predictability across the field, show-

ing a random distribution with no clear spatial pattern visi-

ble in the flux or the corresponding soil properties across the

field (Fig. 7). The nature of the unpredictable spatial vari-

ability of N2O fluxes is a huge barrier which limits the use

of many methods of spatial interpolation of the flux across a

large scale such as a field. Taking many chamber measure-

ments across a small area is one way to improve this method

(Turner et al., 2008); however, this becomes impractical at

larger scales and a compromise needs to be made between

field coverage and the number of chamber measurements

taken.

Another method of measuring N2O fluxes at a field scale

which has advanced in recent years due to the increasing pre-

cision of rapid gas analysers would be eddy covariance (Eu-

gster et al., 2007; Kort et al., 2011). Eddy covariance does

not suffer from the same interpolation issues as the cham-

ber method and can provide a relatively confident estimate

of mean N2O flux across a large area (> 100 m2). The weak-

ness of the eddy covariance method is that it would not be

able to distinguish between sources and provide informa-

tion on hotspot fluxes. Areas in which animals spend a lot

of time to shelter from the elements such as the shaded area

in this field-scale study present problems for eddy covariance

measurements as any physical objects which alter turbulence

in the air (such as trees or foliage in our case) can prevent

measurements from taking place. From the results in this ex-

periment we would suggest that both methods should be de-

ployed in tandem to investigate N2O flux at the field scale as

both methods have significant weaknesses that the other can

compliment.

5 Conclusions

Spatial variability remains one of the largest sources of un-

certainty when measuring N2O flux from agricultural soils.

Results from this study suggest that additional nitrogen ap-

plied to fields in the form of animal waste is the primary

source of anthropogenic N2O emissions from grazed agricul-

tural soils (with the exception of fertiliser events). The wide

and often random distribution of this nitrogen in the soils is

one of the major causes of the spatial variability observed

in N2O emissions. This inherent variability of soil proper-

ties limits the ability to reduce uncertainty in N2O emission

estimates that can be achieved by taking a practical num-

ber of flux measurements using a chamber method. In order

to reduce uncertainties in large-scale emission budgets, it is

effective to identify hotspots of N2O fluxes and determine

the causes of these increased emissions. Identifying areas in

which N2O fluxes are significantly higher than the majority

of the experimental area can reduce overall uncertainty in re-

sults by defining different emission factors.

This study highlights the requirement of a better under-

standing of spatial variability of N2O fluxes from inten-

sively grazed grasslands. Without a basic understanding of

how hotspots of N2O are formed and the lifetime of these

hotspots, it is difficult to determine the true effect of these ar-

eas, which may be significant over wider areas such as on the

farm scale. Field-, farm-, national- and global-scale emission

budgets of agricultural contributions to N2O emissions are

often dominated by emission factors which account for the

soil conditions of the majority of the area of a field. These

budgets may be significantly underestimating N2O fluxes in

some cases, especially for livestock farms with high stocking

densities.
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