Uptake (or negative flux) of nitrous oxide (N2O)in agricultural soils is a controversial issue which has proved
difficult to investigate in the past due to constraints such
as instrumental precision and methodological uncertainties.
Using a recently developed high-precision quantum cascade
laser gas analyser combined with a closed dynamic chamber,
a well-defined detection limit of 4 μg N2O-N m could
be achieved for individual soil flux measurements. 1220 mea-
surements of N2O flux were made from a variety of UK
soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention). Only four of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N2O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not a result of microbiological activity consuming atmospheric N2O