83 research outputs found

    Presentation of neuroendocrine self in the thymus: toward a novel type of vaccine/immunotherapy

    Full text link
    Slightly after the emergence some 400 millions years ago of the first signs of adaptive immune response, tolerogenic pathways developed in order to preserve the integrity of self from potential autoimmune toxicity. Amongst those tolerogenic pathways, the thymus occupies a central place both by deleting self-reactive T cells that are produced in the thymus during random recombination of gene segments encoding the variable parts of the T-cell receptor for antigen (TCR) (negative selection), and by generating self-antigen specific regulatory T cells (Tr). A repertoire of neuroendocrine-related genes are transcribed by thymic stromal cells — epithelial and ‘nurse’ cells (TEC/TNC), dendritic cells (DC) and macrophages (MF) — in such a way that a dominant protein precursor is expressed in the thymus environment. Oxytocin (OT) and neurokinin A (NKA) are the dominant thymic precursors for the neurohypophysial hormone and tachykinin families, respectively. With regard to the insulin gene family, all members are transcribed following a precise cell topography and hierarchy in the profile of gene expression: IGF2 (TEC/TNC) > IGF1 (MF) >> INS (medullary TEC and/or DC). This hierarchy implies that IGF-2 is more tolerated than IGF-1, and much more than Insulin (Ins). The low level of INS transcription in the thymus also explains why Ins displays immunogenic properties, as well as the significant prevalence (±40%) of anti-Ins autoantibodies in the general population. Ins administration failed in providing tolerance or protection toward islet ß cells in type 1 diabetes (T1D). In contrast, the presentation of IGF-2 B11-25, the homologous sequence of Ins B9-23, to peripheral blood mononuclear cells (PBMC) isolated from DQ8+ T1D adolescents significantly increases IL-10 secretion and IL10 expression. Given the potent regulatory/suppressive properties of IL-10 on the autoimmune response toward islet ß cells, these data support that IGF-2 derived sequences constitute a strong basis for the development of an antigen-specific driven tolerogenic approach for T1D prevention and/or cure.Peer reviewe

    Tonsilar NK Cells Restrict B Cell Transformation by the Epstein-Barr Virus via IFN-γ

    Get PDF
    Cells of the innate immune system act in synergy to provide a first line of defense against pathogens. Here we describe that dendritic cells (DCs), matured with viral products or mimics thereof, including Epstein-Barr virus (EBV), activated natural killer (NK) cells more efficiently than other mature DC preparations. CD56brightCD16− NK cells, which are enriched in human secondary lymphoid tissues, responded primarily to this DC activation. DCs elicited 50-fold stronger interferon-γ (IFN-γ) secretion from tonsilar NK cells than from peripheral blood NK cells, reaching levels that inhibited B cell transformation by EBV. In fact, 100- to 1,000-fold less tonsilar than peripheral blood NK cells were required to achieve the same protection in vitro, indicating that innate immune control of EBV by NK cells is most efficient at this primary site of EBV infection. The high IFN-γ concentrations, produced by tonsilar NK cells, delayed latent EBV antigen expression, resulting in decreased B cell proliferation during the first week after EBV infection in vitro. These results suggest that NK cell activation by DCs can limit primary EBV infection in tonsils until adaptive immunity establishes immune control of this persistent and oncogenic human pathogen

    Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways.

    Get PDF
    Although genetic variation is a major risk factor of neurodevelopmental disorders, environmental factors during pregnancy and early life are also important in disease expression. Animal models demonstrate that maternal inflammation causes fetal neuroinflammation and neurodevelopmental deficits, and brain transcriptomics of neurodevelopmental disorders in humans show upregulated differentially expressed genes are enriched in immune pathways. We prospectively recruited 200 sequentially referred children with tic disorders/obsessive-compulsive disorder (OCD), 100 autoimmune neurological controls, and 100 age-matched healthy controls. A structured interview captured the maternal and family history of autoimmune disease and other pro-inflammatory states. Maternal blood and published Tourette brain transcriptomes were analysed for overlapping enriched pathways. Mothers of children with tics/OCD had a higher rate of autoimmune disease compared with mothers of children with autoimmune neurological conditions (p = 0.054), and mothers of healthy controls (p = 0.0004). Autoimmunity was similarly elevated in first- and second-degree maternal relatives of children with tics/OCD (p 0.0001 and p = 0.014 respectively). Other pro-inflammatory states were also more common in mothers of children with tics/OCD than controls (p 0.0001). Upregulated differentially expressed genes in maternal autoimmune disease and Tourette brain transcriptomes were commonly enriched in innate immune processes. Pro-inflammatory states, including autoimmune disease, are more common in the mothers and families of children with tics/OCD. Exploratory transcriptome analysis indicates innate immune signalling may link maternal inflammation and childhood tics/OCD. Targeting inflammation may represent preventative strategies in pregnancy and treatment opportunities for children with neurodevelopmental disorders

    SARS-CoV-2 neutralizing antibodies : longevity, breadth, and evasion by emerging viral variants

    Get PDF
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SAU ARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus–cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)–confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of “high responders” maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design

    Induction of Central Nervous System Disease by the Adaptive Immune Response

    No full text
    Over the last years it has become evident that many neurological diseases of the central nervous system (CNS) are induced by a specific adaptive immune response directed against molecules expressed on CNS-resident cells. Well-recognized examples are anti-N-Methyl-D-Aspartate Receptor (NMDAR) encephalitis which is characterized by the presence of antibodies against neuron-expressed NMDAR, or neuromyelitis optica (NMO), induced by antibodies to astrocyte-expressed aquaporin-4. Many more examples exist, and antibodies, and T or/and B cells have increasingly been associated with CNS disease. Often the symptoms of these diseases have not been typically reported to have an immune aetiology. Beside classical neurological symptoms like ataxia, vision disturbance, and motor or sensory symptoms, these can include cognitive disturbances, behavioral abnormalities, or/and epileptic seizures. Although much has been learned regarding the pathophysiology of prototypic examples of these disorders, there are still major gaps in our understanding of their biology. This may be due to the fact that they are rare diseases, and their therapies are still very limited. This research topic includes contributions addressing the analysis of the adaptive immune response driving disease including target antigens, molecular epitope mapping, and factors involved in the disease pathogenesis such as complement activation cascades, genetic and genomic regulation, as well as environmental triggers. Diagnostic criteria and methods, and treatment are also discussed. The overall aim of the volume is to review progress in our pathophysiological understanding of immune-mediated CNS disorders in order to advance diagnostic and therapeutic approaches, and ultimately improve outcomes for patients

    Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system

    Full text link
    The thymus is the unique lymphoid organ inside which a confrontation occurs throughout life between neuroendocrine self-antigens and a recently evolved system with original recombination machinery driving random generation of immune response diversity. Through transcription of neuroendocrine genes in the thymus stromal network and expression of cognate receptors by immature T cells, the neuroendocrine system regulates early T cell differentiation. In addition and more specifically, intrathymic presentation of neuroendocrine self-antigens by, or in close association with, major histocompatibility complex (MHC) proteins is responsible for the establishment of central immune self-tolerance of neuroendocrine principles. All members of the insulin gene (INS) family are expressed in the thymus stroma according to a precise hierarchy and cell topography: IGF2 (thymic epithelial cells) > IGF1 (thymic macrophages) much greater than INS (thymic medullary epithelial cells and/or dendritic cells). Given this hierarchical pattern in gene expression, the protein IGF-2 is more tolerated than INS. Igf2 transcription is defective in the thymus of bio-breeding (BB) rat, one animal model of type 1 diabetes (T1DM). This thymus-specific defect in Igf2 expression may explain both the absence of central tolerance to INS-secreting beta cells and the lymphopenia (including lack of regulatory RT6(+) T cells) in diabetes-prone BB rats. INS B:9-23 and the homologous sequence of IGF-2 compete for binding to DQ8, an MHC class II allele conferring major susceptibility to T1DM. In young DQ8(+) T1DM patients, INS B:9-23 presentation by DQ8 elicits a dominant IFN-gamma secretion by isolated PBMCs, whereas presentation of the IGF-2 self-antigen promotes a dominant regulatory interleukin-10 secretion. These data demonstrate that opposite immune responses are driven by MHC presentation of a self-antigen (here, IGF-2) and an autoantigen (INS, as "altered" self). The important tolerogenic properties of thymic self-antigens deserve now to be exploited for prevention and/or cure of devastating autoimmune diseases such as T1DM

    Central self-tolerance by thymic presentation of self-antigens and autoimmunity

    Full text link
    Before reacting against non-self infectious agents, the immune system is educated to tolerate the host molecular structure (self). The induction of self-tolerance is a multistep process that begins in the thymus during fetal ontogeny (central tolerance) and also involves inactivating mechanisms outside the thymus (peripheral tolerance). The thymus is the primary lymphoid organ implicated in the development of competent and self-tolerant T cells. During ontogeny, T cell progenitors originating from hemopoietic tissues (yolk sac, fetal liver, and then bone marrow) enter the thymus and undergo a program of proliferation, T cell receptor (TCR) gene rearrangement, maturation and selection. Close interactions between thymocytes (pre-T cells) and the thymic cellular environment are crucial both for T cell development and induction of central self-tolerance. Thymic epithelial and stromal cells synthesize polypeptides belonging to various neuroendocrine families. The thymic repertoire of neuroendocrine-related precursors transposes at the molecular level the dual role of the thymus in T cell negative and positive selection. Thymic precursors not only constitute a source of growth peptides for cryptocrine signaling between thymic stromal cells and pre-T cells, but are also processed in a way that leads to the presentation of self-antigens by thymic major histocompatibility complex (MHC) proteins. Thymic neuroendocrine self-antigens often correspond to peptide sequences highly conserved during the evolution of their corresponding family. The thymic presentation of some neuroendocrine self-antigens is not restricted by MHC alleles. Following the presentation of neuroendocrine self-antigens by thymic MHC proteins, the T cell system might be educated to tolerate main hormone families. Recent experiments argue that a defect in the thymic essential tolerogenic function is implicated as an important factor in the pathophysiology of many autoimmune diseases
    corecore