81 research outputs found

    Age-Dependent Neuropsychiatric Symptoms in the NF-κB/c-Rel Knockout Mouse Model of Parkinson’s Disease

    Get PDF
    Non-motor symptoms are frequently observed in Parkinson’s disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel–/– mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months. To assess whether c-rel–/– mice also suffer from neuropsychiatric symptoms, in this study we tested different cohorts of wild-type (wt) and c-rel–/– mice at 3, 6, 12, and 18–20 months with different behavioral tests. Mice lacking c-Rel displayed anxiety and depressive-like behavior starting in the premotor phase at 12 months, as indicated by the analysis with the open field (OF) test and the forced swim test with water wheel (FST), respectively. A deficit in the goal-oriented nesting building test was detected at 18–20 months, suggesting apathetic behavior. Taken together, these results indicate that c-rel–/– mice recapitulate the onset and the progression of PD-related neuropsychiatric symptoms. Therefore, this animal model may represent a valuable tool to study the prodromal stage of PD and for testing new therapeutic strategies to alleviate neuropsychiatric symptoms

    Neurovascular unit in chronic pain.

    Get PDF
    Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment

    Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    Get PDF
    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology

    Increased CCL2, CCL3, CCL5, and IL-1β cytokine concentration in piriform cortex, hippocampus, and neocortex after pilocarpine-induced seizures

    Get PDF
    BACKGROUND: Cytokines and chemokines play an important role in the neuroinflammatory response to an initial precipitating injury such as status epilepticus (SE). These signaling molecules participate in recruitment of immune cells, including brain macrophages (microglia), as well as neuroplastic changes, deterioration of damaged tissue, and epileptogenesis. This study describes the temporal and brain region pattern expression of numerous cytokines, including chemokines, after pilocarpine-induced seizures and discusses them in the larger context of their potential involvement in the changes that precede the development of epilepsy. FINDINGS: Adult rats received pilocarpine to induce SE and 90 min after seizure onset were treated with diazepam to mitigate seizures. Rats were subsequently deeply anesthetized and brain regions (hippocampus, piriform cortex, neocortex, and cerebellum) were freshly dissected at 2, 6, and 24 h or 5 days after seizures. Using methodology identical to our previous studies, simultaneous assay of multiple cytokines (CCL2, CCL3, CCL5, interleukin IL-1β, tumor necrosis factor (TNF-α)), and vascular endothelial growth factor (VEGF) was performed and compared to control rats. These proteins were selected based on existing evidence implicating them in the epileptogenic progression. A robust increase in CCL2 and CCL3 concentrations in the hippocampus, piriform cortex, and neocortex was observed at all time-points. The concentrations peaked with a ~200-fold increase 24 h after seizures and were two orders of magnitude greater than the significant increases observed for CCL5 and IL-1β in the same brain structures. TNF-α levels were altered in the piriform cortex and neocortex (24 h) and in the hippocampus (5 days) after SE. CONCLUSIONS: Pilocarpine-induced status epilepticus causes a rapid increase of multiple cytokines in limbic and neocortical regions. Understanding the precise spatial and temporal pattern of cytokines and chemokine changes could provide more viable therapeutic targets to reduce, reverse, or prevent the development of epilepsy following a precipitating injury

    A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-\u3b2 signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-\u3b2 signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets

    Efficacy of Anti-Inflammatory Therapy in a Model of Acute Seizures and in a Population of Pediatric Drug Resistant Epileptics

    Get PDF
    Targeting pro-inflammatory events to reduce seizures is gaining momentum. Experimentally, antagonism of inflammatory processes and of blood-brain barrier (BBB) damage has been demonstrated to be beneficial in reducing status epilepticus (SE). Clinically, a role of inflammation in the pathophysiology of drug resistant epilepsies is suspected. However, the use anti-inflammatory drug such as glucocorticosteroids (GCs) is limited to selected pediatric epileptic syndromes and spasms. Lack of animal data may be one of the reasons for the limited use of GCs in epilepsy. We evaluated the effect of the CG dexamethasone in reducing the onset and the severity of pilocarpine SE in rats. We assessed BBB integrity by measuring serum S100β and Evans Blue brain extravasation. Electrophysiological monitoring and hematologic measurements (WBCs and IL-1β) were performed. We reviewed the effect of add on dexamethasone treatment on a population of pediatric patients affected by drug resistant epilepsy. We excluded subjects affected by West, Landau-Kleffner or Lennox-Gastaut syndromes and Rasmussen encephalitis, known to respond to GCs or adrenocorticotropic hormone (ACTH). The effect of two additional GCs, methylprednisolone and hydrocortisone, was also reviewed in this population. When dexamethasone treatment preceded exposure to the convulsive agent pilocarpine, the number of rats developing status epilepticus (SE) was reduced. When SE developed, the time-to-onset was significantly delayed compared to pilocarpine alone and mortality associated with pilocarpine-SE was abolished. Dexamethasone significantly protected the BBB from damage. The clinical study included pediatric drug resistant epileptic subjects receiving add on GC treatments. Decreased seizure frequency (≥50%) or interruption of status epilepticus was observed in the majority of the subjects, regardless of the underlying pathology. Our experimental results point to a seizure-reducing effect of dexamethasone. The mechanism encompasses improvement of BBB integrity. Our results also suggest that add on GCs could be of efficacy in controlling pediatric drug resistant seizures

    A role for leukocyte-endothelial adhesion mechanisms in epilepsy

    Get PDF
    The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately 1 percent of the world population, are not well understood1–3. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1) and leukocyte integrins α4β1 and αLβ2. Inhibition of leukocyte-vascular interactions either with blocking antibodies, or in mice genetically deficient in functional PSGL-1, dramatically reduced seizures. Treatment with blocking antibodies following acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with potential leukocyte involvement in the human, leukocytes were more abundant in brains of epileptics than of controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis

    Characterization of Functional and Structural Integrity in Experimental Focal Epilepsy: Reduced Network Efficiency Coincides with White Matter Changes

    Get PDF
    BACKGROUND: Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilized serial resting-state functional MRI, graph-theoretical analysis of complex brain networks and diffusion tensor imaging to characterize the evolution of global network topology, functional connectivity and structural changes in the interictal brain in relation to focal epilepsy in a rat model. Epileptic networks exhibited a more regular functional topology than controls, indicated by a significant increase in shortest path length and clustering coefficient. Interhemispheric functional connectivity in epileptic brains decreased, while intrahemispheric functional connectivity increased. Widespread reductions of fractional anisotropy were found in white matter regions not restricted to the vicinity of the epileptic focus, including the corpus callosum. CONCLUSIONS/SIGNIFICANCE: Our longitudinal study on the pathogenesis of network dynamics in epileptic brains reveals that, despite the locality of the epileptogenic area, epileptic brains differ in their global network topology, connectivity and structural integrity from healthy brains
    • …
    corecore