85 research outputs found

    Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome

    Get PDF
    The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured

    The influence of persistent pathogens on circulating levels of inflammatory markers: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis

    Get PDF
    Background: Systemic inflammation is linked to cardiovascular risk, but the influence of persistent pathogens, which are conventionally dichotomously categorized, on circulating levels of inflammatory markers is not clear. Antibody levels of pathogens have not been examined in relation to inflammation. Methods: Using data from a subsample of the Multi-Ethnic Study of Atherosclerosis, we examined circulating levels of interleukin-6 (IL-6), C-reactive protein (CRP) and fibrinogen in relation to five common persistent pathogens: cytomegalovirus, herpes simplex virus-1, Hepatitis A virus, Helicobacter pylori and Chlamydia pneumoniae. We tested the hypothesis that the number of seropositive pathogens (based on conventional cut-off points) would not be as sensitive a marker of inflammation as immune response measured by antibody levels to pathogens. Results: High antibody response to multiple pathogens showed graded and significant associations with IL-6 (p \u3c 0.001), CRP (p = 0.04) and fibrinogen (p = 0.001), whereas seropositive pathogen burden did not. In multiple linear regression models, high antibody response to multiple pathogens maintained a positive association only with IL-6 (4.4% per pathogen exhibiting high antibody response, 95% CI 0.0-8.9). Conclusions: High antibody response to pathogens was a more consistent marker of inflammatory outcomes compared to seropositivity alone and high antibody response to multiple pathogens was a stronger marker compared to any single pathogen

    Seropositivity to Cytomegalovirus, Inflammation, All-Cause and Cardiovascular Disease-Related Mortality in the United States

    Get PDF
    Studies have suggested that CMV infection may influence cardiovascular disease (CVD) risk and mortality. However, there have been no large-scale examinations of these relationships among demographically diverse populations. The inflammatory marker C-reactive protein (CRP) is also linked with CVD outcomes and mortality and may play an important role in the pathway between CMV and mortality. We utilized a U.S. nationally representative study to examine whether CMV infection is associated with all-cause and CVD-related mortality. We also assessed whether CRP level mediated or modified these relationships., 2006 (N = 14153) in the National Health and Nutrition Examination Survey (NHANES) III (1988–1994). Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for all-cause and CVD-related mortality by CMV serostatus. After adjusting for multiple confounders, CMV seropositivity remained statistically significantly associated with all-cause mortality (HR 1.19, 95% CI: 1.01, 1.41). The association between CMV and CVD-related mortality did not achieve statistical significance after confounder adjustment. CRP did not mediate these associations. However, CMV seropositive individuals with high CRP levels showed a 30.1% higher risk for all-cause mortality and 29.5% higher risk for CVD-related mortality compared to CMV seropositive individuals with low CRP levels.CMV was associated with a significant increased risk for all-cause mortality and CMV seropositive subjects who also had high CRP levels were at substantially higher risk for both for all-cause and CVD-related mortality than subjects with low CRP levels. Future work should target the mechanisms by which CMV infection and low-level inflammation interact to yield significant impact on mortality

    Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling

    Get PDF
    Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume

    Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)

    Get PDF
    Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM)

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Analysis of the Lung Microbiome in the “Healthy” Smoker and in COPD

    Get PDF
    Although culture-independent techniques have shown that the lungs are not sterile, little is known about the lung microbiome in chronic obstructive pulmonary disease (COPD). We used pyrosequencing of 16S amplicons to analyze the lung microbiome in two ways: first, using bronchoalveolar lavage (BAL) to sample the distal bronchi and air-spaces; and second, by examining multiple discrete tissue sites in the lungs of six subjects removed at the time of transplantation. We performed BAL on three never-smokers (NS) with normal spirometry, seven smokers with normal spirometry (“heathy smokers”, HS), and four subjects with COPD (CS). Bacterial 16 s sequences were found in all subjects, without significant quantitative differences between groups. Both taxonomy-based and taxonomy-independent approaches disclosed heterogeneity in the bacterial communities between HS subjects that was similar to that seen in healthy NS and two mild COPD patients. The moderate and severe COPD patients had very limited community diversity, which was also noted in 28% of the healthy subjects. Both approaches revealed extensive membership overlap between the bacterial communities of the three study groups. No genera were common within a group but unique across groups. Our data suggests the existence of a core pulmonary bacterial microbiome that includes Pseudomonas, Streptococcus, Prevotella, Fusobacterium, Haemophilus, Veillonella, and Porphyromonas. Most strikingly, there were significant micro-anatomic differences in bacterial communities within the same lung of subjects with advanced COPD. These studies are further demonstration of the pulmonary microbiome and highlight global and micro-anatomic changes in these bacterial communities in severe COPD patients

    A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction

    Get PDF
    A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of  μA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis–Menten constants (Km) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2-4-disulfonic acid (PPADS), suramin, and N6-diethyl-β,γ-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods

    Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans
    corecore