96 research outputs found

    Analysis of pressure blips in aft-finocyl solid rocket motor

    Get PDF
    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals

    About multi-resolution techniques for large eddy simulation of reactive multi-phase flows

    Get PDF
    A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion pro- cesses, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcomed with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-eno interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard

    Unsteady Simulation of CO/H2/N2/air Turbulent Non-Premixed Flame

    Get PDF
    The Sandia/ETH-Zurich CO/H2/N2 non-premixed unconfined turbulent jet flame (named ‘Flame A’) is numerically simulated by solving the unsteady compressible reactive Navier– Stokes equations in a three-dimensional axisymmetric formulation, hence, in a formally twodimensional domain. The turbulent combustion closure model adopted is the Fractal Model, FM, developed as a subgrid scale model for Large Eddy Simulation. The fuel is injected from a straight circular tube and the corresponding Reynolds number is 16 700, while the air coflows. Since the thickness of the nozzle is 0.88 mm, and the injection velocity high, ?104ms?1, capturing the stabilization mechanism of the actual flame requires high spatial resolution close to the injector. Results are first obtained on a coarse grid assuming a fast-chemistry approach for hydrogen oxidation and a single step mechanism for carbon monoxide oxidation.With this approach the flame is inevitably anchored. Then, to understand the actual flame stabilization a more complex chemical mechanism, including main radical species, is adopted. Since using this chemistry and the coarse grid of previous simulation the flame blows off numerically, attention is focused on understanding the actual flame stabilization mechanism by simulating a small spatial region close to the injection with a very fine grid. Then, analysing these results, an artificial anchoring mechanism is developed to be used in simulations of the whole flame with a coarse grid. Unsteady characteristics are shown and some averaged radial profiles for temperature and species are compared with experimental data

    On the Numerical Integration of Multi-Dimensional, IBVP for the Euler Equations

    No full text
    A matricial formalism to solve multi-dimensional initial boundary values problems for hyperbolic equations written in quasi-linear based on the lambda scheme approach is presented. The derivation is carried out for nonorthogonal, moving systems of curvilinear coordinates. A uniform treatment of the integration at the boundaries, when the boundary conditions can be expressed in terms of combinations of time or space derivatives of the primitive variables, is also presented. The methodology is validated against a two-dimensional test case, the supercritical flow through the Hobson cascade n.2, and in three-dimensional test cases such as the supersonic flow about a sphere and the flow through a plug nozzle
    • …
    corecore