159 research outputs found
Management of natural resources through automatic cartographic inventory
The author has identified the following significant results. Significant results of the ARNICA program (February - December 1973) were: (1) The quantitative processing of ERTS-1 data was developed along two lines: the study of geological structures and lineaments of Spanish Catalonia, and the phytogeographical study of the forest region of the Landes of Gascony (France). In both cases it is shown that the ERTS-1 imagery can be used in establishing zonings of equal quantitative interpretation value. (2) In keeping with the operational transfer program proposed in previous reports between exploration of the imagery and charting of the object, a precise data processing method was developed, concerning more particularly the selection of digital equidensity samples computer display and rigorous referencing
Promiscuous Binding in a Selective Protein: The Bacterial Na+/H+ Antiporter
The ability to discriminate between highly similar substrates is one of the remarkable properties of enzymes. For example, transporters and channels that selectively distinguish between various solutes enable living organisms to maintain and control their internal environment in the face of a constantly changing surrounding. Herein, we examine in detail the selectivity properties of one of the most important salt transporters: the bacterial Na/H antiporter. Selectivity can be achieved at either the substrate binding step or in subsequent antiporting. Surprisingly, using both computational and experimental analyses synergistically, we show that binding per se is not a sufficient determinant of selectively. All alkali ions from Li to Cs were able to competitively bind the antiporter's binding site, whether the protein was capable of pumping them or not. Hence, we propose that NhaA's binding site is relatively promiscuous and that the selectivity is determined at a later stage of the transport cycle
High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules
Dynamics are fundamental to the functions of biomolecules and can occur on a wide range of time and length scales. Here we develop and apply high-speed AFM height spectroscopy (HS-AFM-HS), a technique whereby we monitor the sensing of a HS-AFM tip at a fixed position to directly detect the motions of unlabeled molecules underneath. This gives Angstrom spatial and microsecond temporal resolutions. In conjunction with HS-AFM imaging modes to precisely locate areas of interest, HS-AFM-HS measures simultaneously surface concentrations, diffusion coefficients and oligomer sizes of annexin-V on model membranes to decipher key kinetics allowing us to describe the entire annexin-V membrane-association and self-assembly process in great detail and quantitatively. This work displays how HS-AFM-HS can assess the dynamics of unlabeled bio-molecules over several orders of magnitude and separate the various dynamic components spatiotemporally
Ambient Intelligence and Pervasive Systems for the Monitoring of Citizens at Cardiac Risk: New Solutions from the EPI-MEDICS Project.
In western countries, heart disease is the main cause of premature death. Most of cardiac deaths occur out of hospital. Symptoms are often interpreted incorrectly. Victims do not survive long enough to benefit from in-hospital treatments. To reduce the time before treatment, the only useful diagnostic tool to assess the presence of a cardiac event is the electrocardiogram (ECG). Event and transtelephonic ECG recorders are used to improve decision-making but require setting up new infra-structures. The pervasive solution proposed by the European EPI-MEDICS project is an intelligent Personal ECG Monitor for the early detection of cardiac events. It includes decision-making techniques, generates different alarm levels and forwards alarm messages to the relevant care providers by means of new generation wireless communication. It is cost saving, involving care provider only if necessary without specific infrastructure. Healthcare becomes personalized, wearable, ubiquitous. 1
Ion permeation through a Cl−-selective channel designed from a CLC Cl−/H+ exchanger
The CLC family of Cl−-transporting proteins includes both Cl− channels and Cl−/H+ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl− ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu148 and Tyr445, are known to impair H+ movement while preserving Cl− transport. In the x-ray crystal structure of CLC-ec1, these residues form putative “gates” flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H+ transport is abolished, and unitary Cl− transport rates are greatly increased, well above values expected for transporter mechanisms. Cl− transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl− flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations
- …