190 research outputs found

    Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II

    Get PDF
    CrkRS (Cdc2-related kinase, Arg/Ser), or cyclin-dependent kinase 12 (CKD12), is a serine/threonine kinase believed to coordinate transcription and RNA splicing. While CDK12/CrkRS complexes were known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNA Pol II), the cyclin regulating this activity was not known. Using immunoprecipitation and mass spectrometry, we identified a 65-kDa isoform of cyclin K (cyclin K1) in endogenous CDK12/CrkRS protein complexes. We show that cyclin K1 complexes isolated from mammalian cells contain CDK12/CrkRS but do not contain CDK9, a presumed partner of cyclin K. Analysis of extensive RNA-Seq data shows that the 65-kDa cyclin K1 isoform is the predominantly expressed form across numerous tissue types. We also demonstrate that CDK12/CrkRS is dependent on cyclin K1 for its kinase activity and that small interfering RNA (siRNA) knockdown of CDK12/CrkRS or cyclin K1 has similar effects on the expression of a luciferase reporter gene. Our data suggest that cyclin K1 is the primary cyclin partner for CDK12/CrkRS and that cyclin K1 is required to activate CDK12/CrkRS to phosphorylate the CTD of RNA Pol II. These properties are consistent with a role of CDK12/CrkRS in regulating gene expression through phosphorylation of RNA Pol II

    Virological failure after 1 year of first-line ART is not associated with HIV minority drug resistance in rural Cameroon

    Get PDF
    Objectives The aim of this study was to describe clinical and virological outcomes in therapy-naive HIV-1-positive patients treated in a routine ART programme in rural Cameroon. Methods In a prospective cohort, 300 consecutive patients starting first-line ART were enrolled and followed for 12 months. Among 238 patients with available viral load data at Month 12, logistic regression was used to analyse risk factors for virological failure (≄1000 HIV RNA copies/mL) including clinical, immunological and virological parameters, as well as data on drug adherence. Population sequencing was performed to detect the presence of drug-resistance mutations in patients with virological failure at Month 12; minority drug-resistance mutations at baseline were analysed using next-generation sequencing in these patients and matched controls. Results At Month 12, 38/238 (16%) patients experienced virological failure (≄1000 HIV RNA copies/mL). Patients with virological failure were younger, had lower CD4 cell counts and were more often WHO stage 3 or 4 at baseline. Sixty-three percent of patients with virological failure developed at least one drug-resistance mutation. The M184V (n = 18) and K103N (n = 10) mutations were most common. At baseline, 6/30 patients (20%) experiencing virological failure and 6/35 (17%) matched controls had evidence of minority drug-resistance mutations using next-generation sequencing (P = 0.77). Lower CD4 count at baseline (OR per 100 cells/mm3 lower 1.41, 95% CI 1.02-1.96, P = 0.04) and poorer adherence (OR per 1% lower 1.05, 95% CI 1.02-1.08, P < 0.001) were associated with a higher risk of virological failure. Unavailability of ART at the treatment centre was the single most common cause for incomplete adherence. Conclusions Virological failure after 1 year of ART was not associated with minority drug resistance at baseline but with incomplete adherence. Strategies to assure adherence and uninterrupted drug supplies are pivotal factors for therapy succes

    A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma

    Get PDF
    The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000–5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273–283, FIBA 5–16, and LBN 306–313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens

    Usefulness of the Palliative Prognostic Index in patients with lung cancer.

    Get PDF
    The usefulness of the Palliative Prognostic Index (PPI) has been successfully validated in a variety of clinical settings. However, while lung cancer is the leading cause of death worldwide, patients with lung cancer accounted for only 6.9-25.8 % of the study populations in these previous studies. We conducted a retrospective study to evaluate the usefulness of the PPI for survival prediction in patients with lung cancer. Patients with lung cancer who were admitted to our hospital between 2009 and 2013 to receive palliative care were enrolled. The association between the Palliative Prognostic Index, determined based on the data recorded in the clinical charts at the last admission to our hospital, and survival was evaluated. The patient group with a PPI of >6 showed a significantly shorter survival time than the patient group with a PPI of ≀ 6 (P < 0.0001, log-rank test). The sensitivity and specificity of the PPI determined using the cutoff value of 6 for predicting less than 3 weeks of survival were 61.3 and 86.8 %, respectively. However, the sensitivity decreased to 50.0 % when the assessment was carried out in only patients with small cell lung carcinoma. Our findings suggest the existence of a close association between the PPI and survival in patients with lung cancer receiving palliative care. However, the sensitivity of the index for predicting less than 3 weeks of survival was relatively low in patients with small cell lung carcinoma

    Epigenetic Activation of a Subset of mRNAs by eIF4E Explains Its Effects on Cell Proliferation

    Get PDF
    BACKGROUND: Translation deregulation is an important mechanism that causes aberrant cell growth, proliferation and survival. eIF4E, the mRNA 5â€Č cap-binding protein, plays a major role in translational control. To understand how eIF4E affects cell proliferation and survival, we studied mRNA targets that are translationally responsive to eIF4E. METHODOLOGY/PRINCIPAL FINDINGS: Microarray analysis of polysomal mRNA from an eIF4E-inducible NIH 3T3 cell line was performed. Inducible expression of eIF4E resulted in increased translation of defined sets of mRNAs. Many of the mRNAs are novel targets, including those that encode large- and small-subunit ribosomal proteins and cell growth-related factors. In addition, there was augmented translation of mRNAs encoding anti-apoptotic proteins, which conferred resistance to endoplasmic reticulum-mediated apoptosis. CONCLUSIONS/SIGNIFICANCE: Our results shed new light on the mechanisms by which eIF4E prevents apoptosis and transforms cells. Downregulation of eIF4E and its downstream targets is a potential therapeutic option for the development of novel anti-cancer drugs

    Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae

    Get PDF
    This review highlighted the following: (i) pathogenic mechanism of the thermostable direct hemolysin produced by Vibrio parahaemolyticus, especially on its cardiotoxicity, (ii) heat-labile and heat-stable enterotoxins produced by enterotoxigenic Escherichia coli, especially structure–activity relationship of heat-stable enterotoxin, (iii) RNA N-glycosidase activity of Vero toxins (VT1 and VT2) produced by enterohemorrhagic Escherichia coli O157:H7, (iv) discovery of Vibrio cholerae O139, (v) isolation of new variant of Vibrio cholerae O1 El Tor that carries classical ctxB, and production of high concentration of cholera toxin by these strains, and (vi) conversion of viable but nonculturable (VBNC) Vibrio cholerae to culturable state by co-culture with eukaryotic cells

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF
    • 

    corecore