1,658 research outputs found

    Applied Geometry Optimization of an Innovative 3D-Printed Wet-Scrubber Nozzle with a Lattice Boltzmann Method

    Get PDF
    In contrast to conventional dry separators, new types of wet scrubbers with innovative nozzle geometries are capable of separating submicron particles with comparatively low pressure drop. As those geometries can easily be adapted using 3D-printing manufacturing, an applied geometry optimization can lead to a fast and cost-efficient product development cycle. In this study, the lattice Boltzmann method is used to optimize the pressure drop associated with a novel nozzle design. Simulated pressure drop data are validated with experimentally determined ones. By replacing originally installed ellipsoid-shaped bluff bodies with foil-shaped structures according to the 4-digit NACA-series, an optimization approach regarding the resulting pressure drop is described

    MEASUREMENT OF WATER-CHANNEL GAPS IN EBWR CORE-I FUEL ELEMENTS

    Full text link

    Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans

    Get PDF
    The vaccinia-related kinases (VRKs) are highly conserved throughout the animal kingdom and phosphorylate several chromatin proteins and transcription factors. In early Caenorhabditis elegans embryos, VRK-1 is required for proper nuclear envelope formation. In this work, we present the first investigation of the developmental role of VRKs by means of a novel C. elegans vrk-1 mutant allele. We found that VRK-1 is essential in hermaphrodites for formation of the vulva, uterus, and utse and for development and maintenance of the somatic gonad and thus the germ line. VRK-1 regulates anchor cell polarity and the timing of anchor cell invasion through the basement membranes separating vulval and somatic gonadal cells during the L3 larval stage. VRK-1 is also required for proper specification and proliferation of uterine cells and sex myoblasts. Expression of the fibroblast growth factor-like protein EGL-17 and its receptor EGL-15 is reduced in vrk-1 mutants, suggesting that VRK-1 might act at least partially through activation of FGF signaling. Expression of a translational VRK-1::GFP fusion protein in the ventral nerve cord and vulva precursor cells restores vulva and uterus formation, suggesting both cell autonomous and non-autonomous roles of VRK-1

    Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors

    Get PDF
    New techniques that attempt to more fully exploit spectroscopic diagnostics in the divertor and pedestal region during highly dissipative scenarios are demonstrated using experimental results from recent low-Z seeding experiments on Alcator C-Mod, JET and ASDEX Upgrade. To exhaust power at high parallel heat flux, q ‖ > 1 GW/m 2 , while minimizing erosion, reactors with solid, high-Z plasma facing components (PFCs) are expected to use extrinsic impurity seeding. Due to transport and atomic physics processes which impact impurity ionization balance, so-called ‘non-coronal’ effects, we do not accurately know and have yet to demonstrate the maximum q ‖ which can be mitigated in a tokamak. Radiation enhancement for nitrogen is shown to arise primarily from changes in Li- and Be-like charge states on open field lines, but also through transport-driven enhancement of H- and He-like charge states in the pedestal region. Measurements are presented from nitrogen seeded H-mode and L-mode plasmas where emission from N 1+ through N 6+ are observed. Active charge exchange spectroscopy of partially ionized low-Z impuri- ties in the plasma edge is explored to measure N 5+ and N 6+ within the confined plasma, while passive UV and visible spectroscopy is used to measure N 1+ -N 4+ in the boundary. Examples from recent JET and Alcator C-Mod experiments which employ nitrogen seeding highlight how improving spectroscopic cov- erage can be used to gain empirical insight and provide more data to validate boundary simulations.EURATOM 63305
    • …
    corecore