208 research outputs found

    Correlated Photon Emission from a Single II-VI Quantum Dot

    Full text link
    We report correlation and cross-correlation measurements of photons emitted under continuous wave excitation by a single II-VI quantum dot (QD) grown by molecular-beam epitaxy. A standard technique of microphotoluminescence combined with an ultrafast photon correlation set-up allowed us to see an antibunching effect on photons emitted by excitons recombining in a single CdTe/ZnTe QD, as well as cross-correlation within the biexciton (X2X_{2})-exciton (XX) radiative cascade from the same dot. Fast microchannel plate photomultipliers and a time-correlated single photon module gave us an overall temporal resolution of 140 ps better than the typical exciton lifetime in II-VI QDs of about 250ps.Comment: 4 pages, 3 figures, to appear in Appl. Phys. Let

    The Calar Alto lunar occultation program: update and new results

    Full text link
    We present an update of the lunar occultation program which is routinely carried out in the near-IR at the Calar Alto Observatory. A total of 350 events were recorded since our last report (Fors et al. 2004). In the course of eight runs we have observed, among others, late-type giants, T-Tauri stars, and infrared sources. Noteworthy was a passage of the Moon close to the galactic center, which produced a large number of events during just a few hours in July 2004. Results include the determinations of the angular diameter of RZ Ari, and the projected separations and brightness ratios for one triple and 13 binary stars, almost all of which representing first time detections. Projected separations range from 0.09arcsec to 0.007arcsec. We provide a quantitative analysis of the performance achieved in our observations in terms of angular resolution and sensitivity, which reach about 0.003arcsec and K~8.5mag, respectively. We also present a statistical discussion of our sample, and in particular of the frequency of detection of binaries among field stars.Comment: 8 pages, 2 figures. Accepted for publication in A&

    The PHASES Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems

    Get PDF
    The Palomar High-precision Astrometric Search for Exoplanet Systems monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise smooth Keplerian motions. Six binaries are presented that show evidence of substellar companions orbiting either the primary or secondary star. Of these six systems, the likelihoods of two of the detected perturbations to represent real objects are considered to be "high confidence", while the remaining four systems are less certain and will require continued observations for confirmation.Comment: 16 Pages, Accepted to A

    Visual Binaries in the Orion Nebula Cluster

    Full text link
    We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is significantly depressed in the inner region of the ONC. The deficit of wide binaries in the central part of the cluster is likely due to dissolution or orbital change during their passage through the potential well of the inner cluster region. Many of the companions are likely to be brown dwarfs.Comment: 27 pages, 10 figures, 2 tables, accepted by the Astronomical Journa

    PHASES High Precision Differential Astrometry of delta Equulei

    Full text link
    delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high precision differential astrometry measurements of delta Equulei from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 micro-arcseconds. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within a twentieth of a parsec and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans improve this deficiency and discuss the outlook for further study of this binary.Comment: Accepted by AJ. Complete versions of tables 2-7 now available at http://stuff.mit.edu/~matthew1/deltaEquTables/ (removed from astroph server

    PHASES Differential Astrometry and Iodine Cell Radial Velocities of the kappa Pegasi Triple Star System

    Full text link
    kappa Pegasi is a well-known, nearby triple star system. It consists of a ``wide'' pair with semi-major axis 235 milli-arcseconds, one component of which is a single-line spectroscopic binary (semi-major axis 2.5 milli-arcseconds). Using high-precision differential astrometry and radial velocity observations, the masses for all three components are determined and the relative inclinations between the wide and narrow pairs' orbits is found to be 43.8 +/- 3.0 degrees, just over the threshold for the three body Kozai resonance. The system distance is determined to 34.60 +/- 0.21 parsec, and is consistent with trigonometric parallax measurements.Comment: Accepted for publication in ApJ, complete versions of tables 2 and 4 can be found at http://stuff.mit.edu/~matthew1/kapPegTables

    Electron-electron interaction in carbon nanostructures

    Full text link
    The electron-electron interaction in carbon nanostructures was studied. A new method which allows to determine the electron-electron interaction constant λc\lambda_c from the analysis of quantum correction to the magnetic susceptibility and the magnetoresistance was developed. Three types of carbon materials: arc-produced multiwalled carbon nanotubes (arc-MWNTs), CVD-produced catalytic multiwalled carbon nanotubes (c-MWNTs) and pyrolytic carbon were used for investigation. We found that λc\lambda_c=0.2 for arc-MWNTs (before and after bromination treatment); λc\lambda_c = 0.1 for pyrolytic graphite; λc>\lambda_c > 0 for c-MWNTs. We conclude that the curvature of graphene layers in carbon nanostructures leads to the increase of the electron-electron interaction constant λc\lambda_c.Comment: 12 pages, 18 figures, to be published in the Proceedings of the NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems, NATO Science Series II, Springer, 200

    Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition

    Get PDF
    Carbon nanotubes (CNTs) are ideal structures for use as reinforcement fibres in composite materials, due to their extraordinary mechanical properties, in particular high Young's modulus (E∼1TPa). Usually the high value of E is taken as granted for all types of carbon CNTs. Here we demonstrate that multi-walled carbon nanotubes (MWCNTs) produced by catalytic chemical vapour deposition (CCVD) have low moduli (E<100GPa) independently of their growth conditions. We attribute this to the presence of structural defects. Additional high-temperature annealing failed to improve the mechanical properties. This study urges a better control of the growth process in order to obtain high strength CCVD grown MWCNTs suitable for reinforcement in large-scale industrial application
    corecore