5 research outputs found

    Unconstrained face mask and face-hand interaction datasets: building a computer vision system to help prevent the transmission of COVID-19

    Get PDF
    Health organizations advise social distancing, wearing face mask, and avoiding touching face to prevent the spread of coronavirus. Based on these protective measures, we developed a computer vision system to help prevent the transmission of COVID-19. Specifically, the developed system performs face mask detection, face-hand interaction detection, and measures social distance. To train and evaluate the developed system, we collected and annotated images that represent face mask usage and face-hand interaction in the real world. Besides assessing the performance of the developed system on our own datasets, we also tested it on existing datasets in the literature without performing any adaptation on them. In addition, we proposed a module to track social distance between people. Experimental results indicate that our datasets represent the real-world’s diversity well. The proposed system achieved very high performance and generalization capacity for face mask usage detection, face-hand interaction detection, and measuring social distance in a real-world scenario on unseen data. The datasets are available at https://github.com/iremeyiokur/COVID-19-Preventions-Control-System

    Face-Dubbing++: Lip-Synchronous, Voice Preserving Translation of Videos

    Get PDF
    In this paper, we propose a neural end-to-end system for voice preserving, lip-synchronous translation of videos. The system is designed to combine multiple component models and produces a video of the original speaker speaking in the target language that is lip-synchronous with the target speech, yet maintains emphases in speech, voice characteristics, face video of the original speaker. The pipeline starts with automatic speech recognition including emphasis detection, followed by a translation model. The translated text is then synthesized by a Text-to-Speech model that recreates the original emphases mapped from the original sentence. The resulting synthetic voice is then mapped back to the original speakers' voice using a voice conversion model. Finally, to synchronize the lips of the speaker with the translated audio, a conditional generative adversarial network-based model generates frames of adapted lip movements with respect to the input face image as well as the output of the voice conversion model. In the end, the system combines the generated video with the converted audio to produce the final output. The result is a video of a speaker speaking in another language without actually knowing it. To evaluate our design, we present a user study of the complete system as well as separate evaluations of the single components. Since there is no available dataset to evaluate our whole system, we collect a test set and evaluate our system on this test set. The results indicate that our system is able to generate convincing videos of the original speaker speaking the target language while preserving the original speaker's characteristics. The collected dataset will be shared
    corecore