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Abstract

In this paper, we propose a neural end-to-end system for
voice preserving, lip-synchronous translation of videos. The
system is designed to combine multiple component models
and produces a video of the original speaker speaking in
the target language that is lip-synchronous with the target
speech, yet maintains emphases in speech, voice character-
istics, face video of the original speaker. The pipeline starts
with automatic speech recognition including emphasis de-
tection, followed by a translation model. The translated text
is then synthesized by a Text-to-Speech model that recre-
ates the original emphases mapped from the original sen-
tence. The resulting synthetic voice is then mapped back to
the original speakers’ voice using a voice conversion model.
Finally, to synchronize the lips of the speaker with the trans-
lated audio, a conditional generative adversarial network-
based model generates frames of adapted lip movements
with respect to the input face image as well as the output of
the voice conversion model. In the end, the system combines
the generated video with the converted audio to produce the
final output. The result is a video of a speaker speaking
in another language without actually knowing it. To eval-
uate our design, we present a user study of the complete
system as well as separate evaluations of the single compo-
nents. Since there is no available dataset to evaluate our
whole system, we collect a test set and evaluate our system
on this test set. The results indicate that our system is able to
generate convincing videos of the original speaker speaking
the target language while preserving the original speaker’s
characteristics. The collected dataset will be shared.

1. Introduction
Speech-to-Speech translation systems have matured in

recent years from early prototypes over mobile hand-held
translators to fully integrated and operational simultaneous
interpreting systems that have been deployed in lecture and
video conferencing applications [14, 16, 26, 31, 36, 62, 63].

They have proven quite effective in practical deployments
and commercial operations using different delivery mecha-
nisms and modalities appropriate to their use case. In mo-
bile consecutive translation of dialogues (travelers, health-
care providers, humanitarian missions, etc.) individual sen-
tences are translated and the output is commonly synthe-
sized in a target language. Simultaneous interpretation of
lectures, movies and video conferences by contrast are best
delivered by subtitling [36,64], as they can be generated si-
multaneously [2,38,40,41,46] and do not create distractions
during a speech or monologue. Still, when movies or off-
line video recordings are to be produced, subtitling is some-
times tiresome and a distraction of its own. Movies, there-
fore, are sometimes also ”dubbed” as an alternate form of
delivery, where voice talents act out translated sentences in
a target language to replace the original voice. So far such
dubbing has been produced only for movies after the fact
but it is costly, requires considerable human effort, and the
result is frequently not convincing when the original video
and the target voice and language don’t properly align. One
proposed solution to improve on these problems is to ap-
ply isometric human or machine translation [2, 30], where
speech translation is performed on an original video source
in a manner that optimizes a temporal match between the
translator’s generated output text and the original video.
With isometric translation a better dubbing could thus be
achieved, but the dubbed speech from a voice talent (or syn-
thetic voice) in the output language still does not match well
with the lip movement and the voice of the original speaker
in the original video.

In this paper, we propose a different approach: Rather
than inserting translated speech into the original video, we
modify the original video in such a way that the result-
ing video shows lip movements corresponding to the trans-
lated speech, and the translated synthetic speech in the tar-
get language is also generated in a way that is preserving
the original speaker’s voice characteristics. The result is a
more convincing video experience in the target language as
lips and voice match speech and speaker. While this idea
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had already been proposed before in early work on a face
translator [54], the integration was not smooth and uncon-
vincing, and only a different synthetic voice could be gen-
erated. Important component technologies, however, have
advanced considerably so that a complete more convincing
integrated face translator architecture can now be realized
that produces a more realistic and convincing experience.
These include large vocabulary low latency simultaneous
speech recognition and translation systems [36], voice con-
version [65] and various forms of video manipulation [50]
and lip syncing [11] methods. In the following, we pro-
pose an architecture that builds on these advances for an
end-to-end speech translation system with voice conver-
sion and lip synchronization that is able to take videos of
English-speaking subjects in real-time and generates videos
of these speakers with translated German audio and adapted
lip movements while also preserving the original speaker’s
voice characteristics, prosodic cues and emphases.

In the following, we do not only develop and explore
the different component models, e.g., Automatic Speech
Recognition (ASR), Machine Translation, Text-to-Speech
Generation (TTS), Voice Conversion, and Lip Generation,
but also investigate how to employ these models together to
provide an effective and accurate end-to-end video experi-
ence to translate speech to a target language and generate
the synchronized lips with respect to the translated audio
data. Several challenging issues must be addressed. First,
we need to provide robust ASR processing to prevent any
loss in the original content but preserving details in prosody
for better naturalness downstream. Second, we should have
an effective translation system to translate the transcribed
text from input language to the target language without er-
ror and missing content while moving emphasis information
recognized during ASR to the appropriate parts of the trans-
lated speech. Another important dimension is the ability to
generate natural, synthetic audio from the translated speech
in another language, but preserving the original speaker’s
voice. For this, a TTS system is designed to work accurately
from translated text data while providing means for fine-
grained prosody control. These means of prosody control
are then used to add emphases to the generated speech that
match the emphases in the original speech. After speech
is generated, we must use voice conversion to adapt the
TTS output back to the input speaker’s voice, since a TTS
is trained on a single or multiple but fixed speakers and thus
cannot generate speech with arbitrary voices. During this
adaptation, voice conversion must not cause any degrada-
tion in speech quality. Finally, we need to generate the lips
with respect to the translated, voice-converted speech. Dur-
ing this, speaker identity must be preserved which means
the image generation model should not cause any degra-
dation on the face and lips while generating output. Last
but not the least, we need to run all these models sequen-

tially and in a pipelined fashion using the outputs of previ-
ous models as an input to the next with minimum delay and
without degradation in performance of each model in order
to provide a robust end-to-end system.

Our multimodal system includes two pipelines: a video
pipeline for face detection and lip synchronization, and an
audio pipeline for speech recognition, translation, speech
synthesis, and voice conversion. The desired output of the
audio pipeline is audio of the original speaker uttering a
translation of the speech in the input video with properly
aligned emphases if any are present in the original audio.
This is achieved by pipelining multiple models. First, our
ASR model with emphasis detection creates a transcript of
the original speech with additional emphasis information.
Then, the English transcript is translated to German by our
translation model while any emphasis information is moved
to the corresponding parts of the German translation. Now,
our TTS model synthesizes German speech with appropri-
ate emphases for the given translation and the voice conver-
sion model adapts the synthesized speech to the voice char-
acteristics of the original speaker. Meanwhile, the video
pipeline gets the input video frames to detect the speaker’s
face in them. Finally, the lip generation module employs
the generated speech and detected faces to synthesize new
frames of the speaker’s face with lips that are synchronized
to the generated speech. To evaluate our system, we con-
ducted comprehensive experiments to evaluate the perfor-
mance of each module as well as the entire system.

To asses the effectiveness of the resulting system, we
collected a test set that contains 262 videos belonging to
25 different speakers. We carried out a user study to study
different aspects of output quality including intelligibil-
ity and naturalness of speech, synchronicity of lips and
audio, and the credibility of the generated faces in the video.

In this paper, we propose a novel architecture that com-
bines recent advances and new techniques in an end-to-
end system that achieves the dream of language transparent
communication, i.e. creating a video communication expe-
rience (in audio and video) between people speaking dif-
ferent languages that removes the language barrier. More
specifically, :

• We propose an integrated neural end-to-end system to
perform automatic video translation that creates the il-
lusion of a speaker speaking another language. Given
the video of a speaker, a translated and high-quality
lip-synced version of the video is generated that pre-
serves emphases, prosody, the face and voice charac-
teristics of the original speaker.

• A real-time, low latency end-to-end speech translation
system capable of translating speech from many lan-
guages to text in many others (subtitling) is extended



for synthetic speech output.

• We present a variation to the FastSpeech 2 TTS model
that generates synthetic speech but also permits fine-
grained prosodic control for the synthesized speech
so as to retain emphasis and prosody of the original
speech.

• A voice conversion module is developed and deployed
that maps the synthetic speech back to the voice of the
original speaker, even though no data from that speaker
is available in the target language.

• We develop a real-world dataset to evaluate the com-
ponents and the overall system. It contains 262 videos
of 25 different speakers. The dataset will be shared
upon publication.

2. Related Work
2.1. ASR and MT

Attention-based models based on sequence-to-sequence
(S2S) [3,37,40,49] are currently one of the top-performing
approaches to end-to-end ASR and MT. A significant
amount of study has already been spent to improving the
performance of S2S models. Attention-based S2S models,
which use a neural network architecture to approximate the
direct mapping from the input to the textual transcript, have
become a very efficient approach for building high perfor-
mance speech recognition systems or machine translation
systems, with a very low real-time factor and a significantly
lower word error rate in batch processing on GPUs. The
S2S technique has the benefit of simplifying the training
of a full end-to-end system, hence hiding the knowledge of
complicated components, as in statistical ASR or MT sys-
tems. The detail of our S2S ASR and MT system is describe
in Section 3.1.

2.2. TTS

Generating text from speech is a mature research field.
Recent developments show that here too that deep learning
approaches are effective to generate superior quality speech
when compared with traditional approaches. Tacotron [67],
Fastspeech [52] and others now outperform traditional ap-
proaches as general-purpose TTS systems and are trainable
on raw speech data with transcripts. Since TTS is a hard
task due to its inherent one-to-many mapping problem, most
modern TTS models are using Mel spectrograms as an inter-
mediate target. The one-to-many mapping problem in TTS
refers to the fact that for a given text, there are a large num-
ber of possible audio sequences that can be considered fit-
ting TTS outputs as there are many valid variations in voice,
prosody, and background noise. To turn the Mel spectro-
gram outputs into audio waveforms, a vocoder model is

subsequently used. Tacotron 2 [56], and many subsequently
published variations of it, remain widely used TTS models.
Its architecture, an encoder-decoder sequence-to-sequence
model based on recurrent units, has the drawback that it is
auto-regressive, which makes it hard to parallelize the in-
ference process. To accelerate inference, multiple alterna-
tive TTS models with non-autoregressive architectures have
been proposed. One of these is FastSpeech 2 [52] which
does not employ recurrent units, while providing slightly
better audio quality than other state-of-the-art models like
Tacotron 2 [56], as evaluated by a survey in the original pa-
per. This also makes it easier to run it incrementally so as
to minimize resulting latency. We have modified the Fast-
Speech 2 architecture to provide fine-grained prosodic con-
trol to be able to use information about emphases from the
original speaker’s voice during speech synthesis.

2.3. Voice Conversion

The purpose of the Voice Conversion module is to make
the resulting voice of the speaker in the target language
sound like the original source speaker’s voice. Classical
Gaussian Mixture Model-based strategies had been pro-
posed and performed well, but modern Artificial Neural
Network-based techniques outperform them. GAN, VAE,
and seq2seq architectures have been utilized to overcome
voice conversion challenges. Voice Conversion systems
can be configured in a variety of ways, including one-to-
one, one-to-many, many-to-many, any-to-any, and so on.
The most challenging voice conversion scenario is given by
any-to-any Voice Conversion systems, to convert any source
voice to any target speaker, even one not seen in the training
data. This has been attempted by several previous archi-
tectures such as VQMIVC [65], AutoVC [51], Adain [9],
FragmentVC [32]. According to r benchmark comparisons,
the VQMIVC is one of the best any-to-any voice conversion
systems. We describe the VQMIVC in detail in Section 3.4.
Finally, we train VQMIVC for converting our TTS output
back to the voice of our input speaker.

2.4. LipSync Video Generation

Perhaps the earliest attempt at lip generation from text
in a foreign language was presented by Ritter et al. [54].
In their work video was synthesized for speakers speak-
ing another language with lip movement synchronous to the
speech of the other language. However, rendering smooth
lip motion and integration in a face for convincing natu-
ral videos was not yet possible. Articulation still appeared
jumpy and unnatural and voices were synthetic and dif-
fered from the input speaker. Improvements in lip and face
synthesis were necessary to create more natural synthetic
videos reflecting the original speaker.

Neural techniques have re-energized new efforts and en-
abled considerable advances to synthesize video based on



arbitrary voice track or text. Many initial efforts were
mostly focused on speaker-dependent approaches [15, 28,
54, 57, 59], but more recent efforts [7, 23] present fully
speaker and language independent approaches. [68] pro-
posed X2Face, which can regenerate the reference video
using a variety of modalities, including an input clip or
another video to be used as the pose reference. [8] sep-
arated the audio embedding network from the video gen-
eration network to reduce error accumulation. They pro-
posed using attention mechanisms in video generation to
achieve higher visual quality than previous methods. [72]
used language-specific adversarial classifiers to disentan-
gle audio-visual embedding to increase lip-sync quality.
[24] built upon the architecture in [23] by implementing
a language-independent lip synchronization discriminator.
[61] employed a noise generator in addition to audio and
identity encoders in order to capture minor changes in fa-
cial expressions that are not captured by the audio. [50]
proposed the use of a pretrained classifier as the expert dis-
criminator in [24] that provides supervision on the lip-sync
accuracy. In our work, we inspire from [50] to design a lip
generation model due to its outperforming lip-sync perfor-
mance.

Recent studies focused on not only the lip synchroniza-
tion but also providing variance in the head pose and head
movements of the subject. [70] proposed a new GAN-based
model that captures implicit attributes related to head pose
in addition to lip-sync information. [73] introduced an ad-
ditional pose source as input to add realistic movement to
lip-synced talking heads. Another research direction is to
utilize a single reference image instead of a short clip to
synthesize videos [66, 71, 74]. Also, 3D model-based ap-
proach [29] and NeRF-based methods [19, 33, 69] are pre-
sented to allow for head or body rotation.

3. System Components
Our proposed system contains five different modules

which are ASR, machine translation, TTS, voice conver-
sion, and lip generation. The system takes an input video
and then extracts the audio and video frames. While the
ASR model uses extracted audio to transcribe it and de-
tect emphases in it, the translation model receives the tran-
scribed text and detected emphases to translate it to the
target language and move the emphases to the appropriate
words in the translation. Afterwards, the TTS model gener-
ates new audio with appropriate emphases using the trans-
lated text emphasis information and sends the output to the
voice conversion model. Later, voice conversion adapts the
TTS output to the speaker’s voice and provides the output
to the lip generation model. Meanwhile, the face detection
model runs on the video frames to extract faces. In the end,
the lip generation system obtains consecutive face images
and generated speech, which is the output of the voice con-

version system, to synthesize the output face that should
have the synchronized lips. An high-level overview of the
pipeline is illustrated in Figure 1.

3.1. ASR

First, we trained a sequence-to-sequence ASR model to
transcribe audio of English (or other language) speech. At
our laboratories, three architectures are under investigation:
A long short-term memory (LSTM) based model, a Trans-
former, and a Conformer LSTM-based model. LSTM-
based [39] models include 6 bidirectional layers for the
encoder and 2 unidirectional layers for the decoder, with
1536 units in each. They have delivered superior recogni-
tion performance on the Switchboard conversational speech
benchmark task [40]. The Transformer-based model pro-
posed in [48] feature 24 encoder layers and 8 decoder lay-
ers. The Conformer-based model [18] consists of 16 en-
coder layers and 6 decoder layers. The size of each layer
in both the Transformer-based and the Conformer-based
models is 512, while the size of the hidden state in the
feed-forward sub-layer is 2048. As explained in [39], the
speech data augmentation approach was employed to re-
duce over-fitting. Also recent work on factorizing multilin-
gual models delivered considerable improvements in view
of broad multilingual expansion [47]. In the present imple-
mentation we used Stochastic Layers with a dropout rate of
0.5 on both Transformer-based and Conformer-based mod-
els to successfully train a deep network [48]. To clas-
sify a word as emphasized, we add a binary classifier
layer to the end of the network. The ensemble of LSTM-
based and Conformer-based sequence-to-sequence model
provided the best results.

3.2. Translation

We translate from English to German (and, indeed, to
many other languages) using a neural sequence-to-sequence
model. More specifically, we employ a Transformer [60]
model with the base configuration as described by [60], im-
plemented in the NMTGMinor framework [45]. We train
the model on 1.8 million sentences of Europarl data [25]
and finally finetune on 150,000 sentences of TED data [6]
for better adaptation towards spoken language.

For emphasis translation, we extract a source-to-target
word alignment. For each emphasized input token, we then
determine the matching output token and put emphasis on
this corresponding output token. The word alignment we
obtain by averaging the normalized attention scores from
each head of the final encoder-decoder multihead-attention
layer:

αji =
1

h

h∑
k=0

αk
ji (1)



Figure 1. Pipeline of the proposed end-to-end speech-translated lipsync-video generation system. Our system first obtains the audio data
from the video input and then extracts Mel spectrogram representation of the audio data. Afterwards, automatic speech translation system
provides transcription of the audio to the machine translation system. Later, we acquire the translated text data and send it to the text-to-
speech generation system to synthesize the output audio. In order to generate the speech with the same voice of the speaker in the input
data, we utilize a voice conversion model and make the synthesized output speech the same with the speaker’s voice. Meanwhile, face
detector captures faces from each frame and then we provide these faces to the lip generation model in conjunction with the synthesized
speech. In the end, we create the video with the synthesized frames and combine with the generated speech to achieve the same video with
the input video that has translated speech and synchronized lips.

αk = softmax

(
(QWQ

k )(KWK
k )T√

d

)
(2)

where h = 8 is the number of attention heads, d =
512 is the model size, and Q, W , WK and WQ follow
the description in [60]. For each emphasized input to-
ken si emphasis is thus put on the output token tj with
j = argmaxk=1..|T |(αki).

3.3. TTS

We are using a modified FastSpeech 2 [52] model for
synthesizing Mel spectrograms of speech for a given text.
We chose FastSpeech 2 over other popular TTS models like
Tacotron 2 [56] as FastSpeech 2 allows for faster inference
times due to its non-autoregressive design. Its architec-
ture is based on an encoder-decoder architecture and em-
ploys multiple feed-forward Transformer blocks [53] that
are made up of stacks of self-attention and TDNN/1-D-
convolution layers.

To make non-auto-regressive TTS feasible, FastSpeech
2 employs variance adaptors which provide information on
prosody to ease the one-to-many mapping problem inher-
ent to TTS. The three variance adaptors enrich the hidden
sequence by adding predicted pitch, duration, and energy
information on phoneme-level to the hidden sequence thus
helping the decoder by easing the one-to-many mapping
problem of TTS. To further ease the training process of the
model and make phoneme-level variance prediction possi-
ble, the model is given the input text not as a sequence of
graphemes but rather as a sequence of phonemes. Conse-
quently, prior conversion is needed for grapheme inputs.
This is done by consulting a pronunciation dictionary and,

for words not present in the dictionary, by employing a
grapheme to phoneme model trained using the Montreal
Forced Aligner [34].

Originally, the predictions of the variance adaptors can
only be controlled by parameters for the entire utterance
which would not allow for fine-grained prosody control.
As we aim to add emphases to the synthesized speech that
match the emphases in the original speech, we then add
prosody controls at the word-level to the text input by way
of Speech Synthesis Markup Language [58] (SSML) tags.
Using SSML, we can now add emphasis tags to words in
the translation that correspond to words in the original tran-
script that were emphasized by the speaker. In our system,
this happens automatically as the ASR model adds empha-
sis tags to text sections where emphases were detected. The
prosody predictions of the variance adaptors are then modi-
fied for the phonemes of that word to create an emphasis in
the TTS output. The model varies duration and energy of
the respective phonemes as well as increasing or decreas-
ing pitch depending on the originally predicted pitch for the
word. Finally, we use the HiFi-GAN vocoder [27] to gener-
ate audio wave-forms from the Mel spectrograms generated
by the TTS model.

3.4. Voice Conversion

Following TTS in a standardized voice in the target lan-
guage with the prosody projected from the source speech,
we aim to revert the generated speech to the original
speaker’s voice. To accomplish this, we need to employ
voice conversion from the synthetic TTS voice back to the
original speaker’s voice in our original videos. We use
VQMIVC (Vector quantization mutual information voice
conversion) as a method for this step. VQMIVC uses
a straightforward but effective autoencoder architecture to



perform voice conversion in a way that separates the ef-
fects of voice from prosody, content and emphasis. The
framework consists of four modules: a content encoder that
produces a content embedding from speech, a speaker en-
coder that produces a speaker embedding (D-vector) from
speech, a pitch encoder that produces prosody embedding
from speech, and a decoder that generates speech from con-
tent, prosody, and speaker embeddings, respectively. Pho-
netics and prosody are represented through content embed-
ding and prosody embedding. The content embedding is
discretized by a vector quantization module and used as tar-
get for the contrastive predictive coding loss.

A mutual information (MI) loss measures the dependen-
cies between all representations and can be effectively in-
tegrated into the training process to achieve speech repre-
sentation disentanglement. During the conversion stage,
the source speech is put into the content encoder and pitch
encoder to extract content embedding and prosody embed-
ding. To extract the target speaker embedding, the target
speech is sent into the speaker encoder. Finally, the de-
coder reconstructs the converted speech using the source
speech’s content embedding and prosody embedding and
the target speech’s speaker embedding. We adapt the pre-
trained VQMIVC voice conversion on both German and
English datasets to get better performance on both lan-
guages. Our VQMIVC model is fine-tuned with the same
hyper-parameters as in the original papers. The evaluation
of VQMIVC is presented in [65].

3.5. Lip Generation

We address the lip generation task as a conditional gener-
ative adversarial network-based [17, 35] image generation,
since our goal is to generate lips with respect to the audio
input and face input in order to make the generated lips syn-
chronized with the audio. We design our GAN model with
inspiration from [50]. First of all, we propose an audio-
guided face generator G to synthesize a face image that is
synchronized with the audio. For this, we first obtain Mel
spectrogram representation of the audio data. Afterwards,
we provide an audio sequence as a sequence of Mel spec-
trogram to our audio encoder as an input. The audio encoder
is responsible for embedding the audio input in order to ex-
tract the embedded feature representation. Meanwhile, we
utilize an image encoder to encode the input image. Our
input image has six channels, namely the depth-wise con-
catenation of two separate images. While the first three
channels contain a face of the corresponding subject from
another time sequence or from another video of the same
subject, namely reference image xr, the second image is
the masked version of the ground truth face, xm. The task
is to generate the masked area of xm with respect to the au-
dio sequence. We basically mask the half-bottom part of the
face image. Since preserving the identity and details of the

face to improve the realism of the final image are crucial,
the reference image xr is necessary to inject these details to
the G while the final face image is being generated. Other-
wise, it would be challenging for our generator to preserve
the identity and the details in the bottom part of the image.
After we acquire the audio and face feature representations
from audio and image encoders, we concatenate them along
the depth. We further feed the face decoder with this con-
catenated feature representation.

We further utilize residual connections between the re-
ciprocal layers of the image encoder and image decoder
networks in our generator G. These connections allow us
to transmit the output of encoder’s layers to the decoder’s
layers in order to transfer the crucial details and identity of
the input face images. We utilize ReLU activation function
in our generator with instance normalization layers.

For the discriminator, we employ a binary classifier with
a cross-entropy loss to distinguish real and fake images.
This discriminator is responsible for the quality and real-
ism of the generated image. In the discriminator, we benefit
from spectral normalization to provide more stable training
by normalizing the gradients. Besides, we employ Leaky
ReLU and Instance normalization in discriminator. In ad-
dition to this, we must also control whether the prior con-
dition is provided in the generated image as it is proposed
in [50]. Therefore, we utilize a pretrained synchronization
model [11,50] to evaluate the coherence between the condi-
tional input audio and the output face image. This synchro-
nization network is also a binary classifier that classifies the
image to produce output whether synchronization is pro-
vided or not. The whole lip generation model is illustrated
in Figure 2.

To train our system, we employ a large-scale Oxford-
BBC Lip Reading Sentence 2 dataset (LRS2) [1, 10, 12].
We feed our image generator with a set of five consecutive
frames. We further send the audio data to audio encoder
after we obtain Mel spectrogram representation of the cor-
responding audio sequence. During the experiments, we
follow the proposed data splits to train, validate, and test
our model. In order to calculate synchronization loss, we
directly use the pretrained lip synchronization model [50],
and we do not update this model during the training. Our
overall loss function is as follows:

L = LcGAN + α ∗ Limg + β ∗ Lsync (3)

where LcGAN is a conditional adversarial loss, Limg is
an image reconstruction loss, ||y−y′||, that calculates the L1
distance between target face image and the generated face
image in the pixel space. Lsync is a synchronization loss
that provides feedback to the generator whether the syn-
chronization between the lip and the audio input is able to
be provided in the generated face image. α and β are co-
efficients that alter the effect of image reconstruction loss



Figure 2. Illustration of the proposed lip generation model. We have two encoders, namely audio encoder and image encoder, and one
face decoder to generate face images. After we extract features from the audio and the image, we concatenate them along the depth axis
to provide input to the face decoder. Besides, we have a discriminator network to evaluate the quality of the generated face images and
decide whether they are real or fake. Finally, we have a pretrained synchronization network that is classifying the generated face image to
determine whether it is synchronized with the input audio. Please note that we train the whole video pipeline as end-to-end.

and synchronization loss on the total loss. According to the
experimental results, we find the best α and β coefficients
as 1 and 0.05.

4. System Integration

In order to combine the multitude of models for ASR,
translation, TTS, voice conversion, and lip generation into
a single system, we chose a cascade architecture. A diagram
of the high-level architecture of our system is shown in Fig-
ure 1. Initially, the audio of the given video is extracted
and converted to the expected waveform format of the ASR
module which then creates an English transcription of the
input speech with additional information regarding detected
emphases. Then, the translation module produces a German
translation of that transcript, including SSML tags for em-
phases at the parts of the text that correspond to words in
the original English transcript that were marked as empha-
sized by the ASR module. Subsequently, the TTS module
is given this translated text and generates German speech
with emphases according to the SSML tags. The result-
ing Mel spectrogram is turned into a waveform file by the
HiFi-GAN vocoder. Afterwards, the final audio is created
by the voice conversion module which gets the waveform
of German speech that the vocoder produced as input and
uses the original English audio of the input video as tar-
get speaker. Meanwhile, the video pipeline starts by detect-
ing faces in the input video to provide consecutive face im-
ages to the lip generation model. Besides, the lip generation
module is given the speech produced by the voice conver-
sion model to generate face images with the modified lips.
In the end of the system, the generated faces and generated
speech are combined to create the final output video. This
whole pipeline allows us to acquire a video with translated
speech of the original speaker in the target language and the
adapted lips by only providing an arbitrary video.

5. Experimental Results
5.1. Dataset

We used various datasets to train and evaluate our mod-
els. Besides, we collected a test set to measure the perfor-
mance of the entire system.

ASR and MT training dataset For training and eval-
uation of our ASR models, we used Mozilla Common
Voice v6.1 [4], Europarl [25], How2 [55], Librispeech [42],
MuST-C v1 [13], MuST-C v2 [5] and Tedlium v3 [20]
datasets. We also collected the text parallel training data
provided by WMT 2019, 2020, 2021 for training MT con-
sisting of a total of 69.8 million sentences as shown on the
right side of Table 1.

CSS10 German dataset [44]. CSS10 is a collection of
single speaker speech datasets that contain ten different lan-
guages. It includes short audio clips and their aligned text
data. Since we aimed to generate the audio in German, we
utilized the CSS10 German dataset to train our TTS model
as it provides 17 hours of high-quality single speaker audio
data which is enough to train a single speaker TTS model.

LRS2. We employed the Oxford-BBC Lip Reading Sen-
tences 2 (LRS2) dataset to train our lip generation model
and also evaluate its performance. We followed the pre-
sented train, validation, and test setups to train the model
as well as evaluate the performance. The training set con-
tains 45839 utterances, while validation and test sets include
1082 and 1243 utterances respectively.

Our dataset. Since there is no suitable dataset to test
our end-to-end video translation system in the literature, we
collected various videos from the internet to create a test
set. Our test set contains 262 different video clips belong-
ing to 25 different speakers. The duration of the test clips is
about ten seconds. Please note that all speakers speak En-
glish since we evaluated our system for the combination of
English input and German output.



Table 1. Summary of the English datasets used for speech recognition (left) and machine translation (right)

Corpus Utterances Speech data [h]

A: Training Data
Mozilla Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
Tedlium 268k 482

B: Test Data
Tedlium 1155 2.6
Librispeech 2620 5.4

Dataset Sentences

TED Talks (TED) 220K
Europarl (EPPS) 2.2MK
CommonCrawl 2.1M
Rapid 1.21M
ParaCrawl 25.1M
OpenSubtitles 12.6M
WikiTitle 423K
Back-translated News 26M

5.2. Evaluation metrics

WER and BLEU The word error rate (WER) is a com-
mon metric for measuring speech recognition performance.
The Levenshtein distance at the word level is used to calcu-
late the WER. The WER of Librispeech test set represents
the ASR’s performance on read speech, while the WER of
Tedlium test set represents the ASR’s performance on spon-
taneous speech. The BLEU, or Bilingual Evaluation Under-
study, is a score that compares a candidate translation of text
against one or more reference translations [43].

LSE-D and LSE-C [50]. Since the FID, SSIM, and
PSNR are not able to evaluate the synchronization of the
lips and the synchronization is a crucial key-point in the lip
generation task in addition to the quality of the generated
face images, using Lip-Sync Error-Distance (LSE-D) and
Lip-Sync Error-Confidence (LSE-C) provide more reliable
representation about the synchronization. Therefore, as it is
proposed in [50], we utilized LSE-D and LSE-C metrics to
evaluate the synchronization performance of our lip gener-
ation model.

FID [21]. In order to evaluate the quality of the gener-
ated face images, we employed FID score [21] by providing
the manipulated face images. Thus, FID basically calculates
the distance between real samples and generated samples in
the feature space. For this, Inceptionv3 image classification
model, that was trained on ImageNet dataset, is utilized to
extract features. In this metric, lower score indicates better
quality for the generated images.

User study. For the evaluation of TTS model as well as
the whole system there are no widely accepted computable
quality metrics. So in order to evaluate the TTS model and
the whole system, we conducted user studies and asked par-
ticipants to evaluate the performance in several different as-
pects.

5.3. ASR and Translation

Our ASR and translation models are evaluated by em-
ploying computable metrics on standard datasets. For
ASR, our ensemble of LSTM-based and Comformer-based
sequence-to-sequence model achieves WERs of respec-
tively 2.4 and 3.9 on the Libri and Tedlium test sets.
In Table 2, we present the results of Conformer-based,
Transformer-based, LSTM-based, and ensemble-based ap-
proaches. According to the table, ensemble-based method
achieves the best results on Libri test, while it reaches the
same performance with LSTM-based approach and sur-
pass the Conformer-based and Transformer-based methods
on TED-LIUM test set. Therefore, we decide to use our
ensemble-based approach in the final proposed system. Be-
sides, our translation model attains a translation score of
29.7 BLEU on the IWSLT tst2010 test set.

Table 2. WER results on Libri and Tedlium test sets. While
we obtain the best result with ensemble-based method on Libri
dataset, we get the best results with ensemble-based and LSTM-
based methods on Tedium dataset.

Data Libri Tedlium

Conformer-based 3.0 4.8
Transformer-based 3.2 4.9
LSTM-based 2.6 3.9
Ensemble 2.4 3.9

5.4. TTS

We trained our TTS model on the CSS10 German
dataset [44] which is a single-speaker dataset consisting of
nearly 17 hours of German speech and on the LJSpeech [22]
dataset, an English single-speaker dataset consisting of ap-



Table 3. MOS and 95% confidence intervals for ground truth sam-
ples and TTS syntheses by Tacotron 2 and modified FastSpeech 2.

MOS
Ground Truth 4.21 ± 0.17

Tacotron 2 3.86 ± 0.21
Modified FastSpeech 2 3.87 ± 0.2

proximately 24 hours of speech. Montreal Forced Aligner
was used to transform the grapheme inputs of the datasets
to phoneme sequences and generate the text-audio align-
ments needed for training the variance adaptors. Training
was done on a server with an Intel 4124 CPU, 32 gigabytes
of memory, and a single NVIDIA RTX Titan GPU and took
approximately 72 hours. A pretrained universal HiFi-GAN
model was used as vocoder, no finetuning was necessary.

The evaluation of the TTS system was done in two user
studies. A first study was conducted to compare the per-
formance of our modified FastSpeech 2 architecture on the
LJSpeech dataset with the widely used Tacotron 2 architec-
ture to get a baseline. A second user study was done on
our model which was trained on the German CSS10 dataset
in order to evaluate it’s performance when applying fine-
grained prosody control.

For comparison with Tacotron 2, we synthesized ten
texts from the test set of the LJSpeech dataset with both
Tacotron 2 and FastSpeech 2. For ground truth compari-
son we used the respective audio samples. A group of eight
participants was then asked to rate the quality of the audio
samples on a scale from 1 to 5. After that, mean opinion
scores (MOS) and confidence intervals were calculated. Ta-
ble 3 shows the MOS and confidence intervals results from
this survey. As the results show, our modified FastSpeech
2 model performs as well as Tacotron 2. This confirms the
results of the FastSpeech 2 evaluation in [52] and suggests
that our modifications to FastSpeech 2 did not decrease the
quality of the synthesized speech.

For subjective evaluation of the German TTS system and
the fine-grained prosody control capabilites of our model,
speech was synthesized for texts randomly drawn from the
test set of the CSS10 dataset. For ground truth compari-
son we further chose random audio samples from the test
set. This time we also compared the quality of the gener-
ated speech when using default prosody with the quality of
generated speech with added emphases. We conducted this
additional comparison only on the German model as this is
the model we also use in the final system evaluation. To
evaluate the capability of the system to add emphases to the
synthesized speech, the chosen text samples were synthe-
sized again, this time with an emphasis added to a random
word. To get a more differentiated view on quality differ-
ences between unemphasized and emphasized TTS outputs,
the group of eight participants asked to rate the audio qual-

Table 4. MOS and 95% confidence intervals for ground truth and
TTS samples.

Naturalness Intelligibility
Ground Truth 4.28 ± 0.12 4.82 ± 0.08

Synthesis 3.59 ± 0.28 4.69 ± 0.09

Table 5. MOS, Comparison, and 95% confidence intervals re-
garding naturalness, intelligibility and perceptibility of emphasis
for TTS samples with randomly emphasized word.

TTS with
Emphasis

Change vs.
Standard Synthesis

Naturalness 3.29 ± 0.16 - 0.3
Intelligibility 4.71 ± 0.13 + 0.02

Emphasis 3.75 ± 0.28 -

ity considering two metrics, naturalness and intelligibility
on a scale from 1 to 5. For the emphasized TTS outputs
perceptibility of emphasis was additionally rated by the par-
ticipants. Table 4 shows the MOS and confidence intervals
for ground truth and unemphasized samples. Table 5 shows
the MOS and confidence intervals for the synthesized sam-
ples with added random emphasis. Additionally, changes in
naturalness and intelligibility scores when compared with
non-emphasized TTS samples are shown.

The results show no clear difference between intelligi-
bility scores of synthesized samples and ground truth sam-
ples. However, naturalness is rated worse for synthesized
samples, implying a perceptible difference in audio quality
or prosody when comparing ground truth and synthesized
samples. But these differences do not seem to decrease in-
telligibility in any way. Adding emphases to the generated
speech seems to slightly decrease naturalness, suggesting
that the emphases, while being well perceptible, might not
sound entirely natural.

The overall performance of our model, even when em-
phases are added, is comparable with the MOS results for
Tacotron 2 and our modified FastSpeech 2 obtained in the
first user study as shown in Table 3. However, there cannot
be any conclusive comparison as these models have been
trained for English speech and only a single MOS value was
given by the participants.

5.5. Lip Generation Results

In order to evaluate the lip generation performance, we
follow three different strategies. We first evaluate the qual-
ity of the generated images by using FID score [21]. We
further consider the conditional image generation by mea-
suring the synchronization between the generated lip and
the audio input. For this, we benefit from recently proposed
novel metrics, LSE-D and LSE-C [50], which are basically
distance and confidence scores for the synchronization per-



Table 6. Evaluation of Wav2Lip and our model. We test both model on LRS2 test set and our test set. Since we do not have the ground
truth outputs for the German language scenario, we could not calculate FID scores. Wav2Lip-GAN results on LRS2 datasets are taken
form the corresponding paper [50].

Model Data Language LSE-D LSE-C FID
Wav2Lip-GAN LRS2 English 6.46 7.78 4.44
Ours LRS2 English 6.98 6.93 8.86
Wav2Lip-GAN Ours English 8.35 6.40 19.62
Ours Ours English 8.11 6.52 21.15
Wav2Lip-GAN Ours German 7.93 7.18 -
Ours Ours German 7.90 7.17 -

”Subset of the face images from original video.”

”Subset of the generated face images based on the translated and generated speech.”

Figure 3. Sample face images from original video and generated video. In the first row, eight consecutive frames from original video are
presented. In the second row, the same eight frames with new lips are presented. The images in the second row are synthesized by using
generated German speech which is the translation of the input speech.

formance. Finally, we perform subjective tests to quantify
the proposed system’s performance. In Table 6, we show
LSE-D, LSE-C, and FID scores for LRS2 test set as well
as our proposed test set. The LSE-D and LSE-C results
on LRS2 dataset show that our model and Wav2Lip [50]
achieve almost the same performance to provide synchro-
nized lips, although Wav2Lip shows slightly better scores.
On the other hand, on our dataset, we achieve a slightly
better scores in English case and in German case, though
the scores are quite similar. This outcome indicates that
both models have an effective generalization capacity and
they are robust against real-world challenges, since both
models show a well performance on unseen dataset. More-
over, FID scores are again very close to each other. How-
ever, Wav2Lip achieves better FID scores on LRS2 and
our dataset. This FID analysis indicates that the genera-
tion quality of our model should be improved. Please note
that we could not calculate the FID score for our dataset,
since we generate the faces based on the German audio in-
put, therefore, there are no ground truth images.

5.6. System Evaluation

In order to evaluate the whole system, we conduct a user
study with 25 participants. In this way, we aim to inves-

tigate the performance of the system by considering sev-
eral different aspects: 1) realism of the generated face, 2)
naturalness of the generated voice, 3) intelligibility of the
speech, 4) synchronization quality of the speech and lip,
5) accuracy of the translated speech given the original En-
glish transcript. We ask one question for each aspect. How-
ever, please note that only the participants who know the
German language answered the questions related to intelli-
gibility and the German translation of the speech. In the
user study, we randomly choose 80 videos from the 262
videos of the dataset described in Subsection 5.1 and show
the translated and lip-synced results to the participants with
the transcribed original speech as well as the five questions.
Sample evaluation videos can be found here 1.

We illustrate results of quality of the generated faces,
synchronization accuracy, and the translation accuracy in
Figure 4. The results indicate that participants rate the qual-
ity of the generated faces as high. Similarly, the majority
of the answers state that our system is provides accurate
synchronization in the generated videos. For the transla-
tion accuracy, although a majority of the answers indicate
that there are minor mistakes in the text, only 15% of the

1https://videospeechtranslation.github.io



Figure 4. Subjective test results on our proposed test set. We ask participants to evaluate the generated videos in several different aspects,
namely the quality of the generated face images, the synchronization quality of the lips and speech, the accuracy of the translated speech,
naturalness of the generated speech, and the intelligibility of the generated speech.

Table 7. Subjective evaluation on our proposed test set. In the
questions, the minimum score is 1 while the maximum score is 5.
Scores show the mean value and standard deviation.

Measurement Score
Naturalness 3.36 ± 0.98
Intelligibility 4.24 ± 0.86

answers find the results inaccurate. Moreover, we demon-
strate naturalness and intelligibility results in Table 7. The
results demonstrate that our system is successful in provid-
ing naturalness and intelligibility in the generated video.

The evaluation showed that the faces and lip-
synchronization in the generated videos were believable and
the generated speech well intelligible. Sample images are
shown in Figure 3. However, we observed occasional prob-
lems with naturalness of the generated speech and inaccu-
racies in the translations due to lacking punctuation in the
transcripts generated by the ASR model. Moreover, the lip-
syncing model showed slight issues with bearded faces and
also had some quality problems that must be addressed to
improve the quality of the generated faces to make them
more natural.

6. Conclusion
In this work, we proposed an end-to-end system for com-

bined face, lip, audio translation from input video. Given
a video of a speaker, our system can generate a convinc-
ing output video of that speaker uttering a translation of the
original speech while adapting lip movements to the new
audio and preserving voice characteristics. Additionally,
emphases are preserved by emphasis detection in the ASR
model, and modifications to the used FastSpeech 2 TTS
model allow fine-grained prosody control which is used to
create corresponding emphases in the synthesized speech.
The detailed experimental results of each module and user
study for the system evaluation indicated that we achieve
accurate modules for each task and acceptable performance

in the final system to do the video translation. To address
remaining translation issues discovered in our experiments
and to improve naturalness of the generated speech preserv-
ing pauses, we employ more advanced ASR models with
punctuation capabilities and voice activity detection to mark
pauses in the transcript. This information improves trans-
lation quality and naturalness. Improvements towards more
robust voice conversion are also desirable as we still observe
occasional robustness issues on long speech inputs. These
issues are likely to improve with additional training data
that specifically incorporates long sentence speech samples.
Lastly, as the pipeline of our system contains many com-
ponents, inference times and latency of the ensemble need
to be improved. Ongoing work is devoted to improving
speed and latency of the components, parallelizing compo-
nent processing and a better pipelined architecture.
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