2,446 research outputs found

    Table of Contents

    Get PDF
    This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The IETF Trust (2007). The first RFC that describes an RTP payload format for ITU Telecommunication Standardization Sector (ITU-T) recommendation H.263 is RFC 2190. This specification discusses why to move RFC 2190 t

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Densification and preservation of ceramic nanocrystalline character by spark plasma sintering

    Get PDF
    Spark plasma sintering is a hot pressing technique where rapid heating by dc electric pulses is used simultaneously with applied pressure. Thus, spark plasma sintering is highly suitable for rapid densification of ceramic nanoparticles and preservation of the final nanostructure. A considerable portion of the shrinkage during densification of the green compact of nanoparticles in the first and intermediate stages of sintering occurs during heating by particle rearrangement by sliding and rotation. Further densification to the final stage of sintering takes place by either plastic yield or diffusional processes. Full densification in the final stage of sintering is associated with diffusional processes only. Nanoparticle sliding and rotation during heating may also lead to grain coalescence, with much faster kinetics than normal grain growth at higher temperatures. Based on existing models for particle rearrangement and sliding, the contributions of these processes in conjunction with nanoparticle properties and process parameters were highlighted

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Answer Set Programming for Non-Stationary Markov Decision Processes

    Full text link
    Non-stationary domains, where unforeseen changes happen, present a challenge for agents to find an optimal policy for a sequential decision making problem. This work investigates a solution to this problem that combines Markov Decision Processes (MDP) and Reinforcement Learning (RL) with Answer Set Programming (ASP) in a method we call ASP(RL). In this method, Answer Set Programming is used to find the possible trajectories of an MDP, from where Reinforcement Learning is applied to learn the optimal policy of the problem. Results show that ASP(RL) is capable of efficiently finding the optimal solution of an MDP representing non-stationary domains

    Composition Effects on Kilonova Spectra and Light Curves: I

    Full text link
    The merger of neutron star binaries is believed to eject a wide range of heavy elements into the universe. By observing the emission from this ejecta, scientists can probe the ejecta properties (mass, velocity and composition distributions). The emission (a.k.a. kilonova) is powered by the radioactive decay of the heavy isotopes produced in the merger and this emission is reprocessed by atomic opacities to optical and infra-red wavelengths. Understanding the ejecta properties requires calculating the dependence of this emission on these opacities. The strong lines in the optical and infra-red in lanthanide opacities have been shown to significantly alter the light-curves and spectra in these wavelength bands, arguing that the emission in these wavelengths can probe the composition of this ejecta. Here we study variations in the kilonova emission by varying individual lanthanide (and the actinide uranium) concentrations in the ejecta. The broad forest of lanthanide lines makes it difficult to determine the exact fraction of individual lanthanides. Nd is an exception. Its opacities above 1 micron are higher than other lanthanides and observations of kilonovae can potentially probe increased abundances of Nd. Similarly, at early times when the ejecta is still hot (first day), the U opacity is strong in the 0.2-1 micron wavelength range and kilonova observations may also be able to constrain these abundances

    Students' mental prototypes for functions and graphs

    Get PDF
    This research study investigates the concept of function developed by students studying English A-level mathematics. It shows that, while students may be able to use functions in their practical mathematics, their grasp of the theoretical nature of the function concept may be tenuous and inconsistent. The hypothesis is that students develop prototypes for the function concept in much the same way as they develop prototypes for concepts in everyday life. The definition of the function concept, though given in the curriculum, is not stressed and proves to be inoperative, with their understanding of the concept reliant on properties of familiar prototype examples: those having regular shaped graphs, such as x2 or sin*, those often encountered (possibly erroneously), such as a circle, those in which y is defined as an explicit formula in x, and so on. Investigations reveal significant misconceptions. For example, threequarters of a sample of students starting a university mathematics course considered that a constant function was not a function in either its graphical or algebraic forms, and threequarters thought that a circle is a function. This reveals a wide gulf between the concepts as perceived to be taught and as actually learned by the students
    • …
    corecore