22 research outputs found

    Regenerative responses of rabbit corneal endothelial cells to stimulation by fibroblast growth factor 1 (FGF1) derivatives, TTHX1001 and TTHX1114

    Get PDF
    Utilising rabbit corneal endothelial cells (CEC) in three different paradigms, two human FGF1 derivatives (TTHX1001 and TTHX1114), engineered to exhibit greater stability, were tested as proliferative agents. Primary CECs and mouse NIH 3T3 cells treated with the two FGF1 derivatives showed equivalent E

    Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creaive Commons Attribution License. The definitive version was published in Eveleth, R., Glover, D. M., Long, M. C., Lima, I. D., Chase, A. P., & Doney, S. C. . Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing. Frontiers in Marine Science, 8, (2021): 612764, https://doi.org/10.3389/fmars.2021.612764.High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics.This work was supported in part by the National Aeronautics and Space Administration (NASA) as part of the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES; NASA grant 80NSSC18K0018). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the United States Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Sequence and expression of the Cc

    No full text

    Evidence for Evolutionary Duplication of Genes in the Dopa Decarboxylase Region of Drosophila

    No full text
    The region surrounding the dopa decarboxylase gene (Ddc) of Drosophila contains a cluster of genes, many of which appear to be functionally related by virtue of their effects on cuticle development and/or catecholamine metabolism. In this report we describe evidence that the Ddc gene and the closely linked alpha-methyldopa hypersensitive (amd) gene share extensive sequence homology and are the products of a gene duplication event. The two genes are transcribed convergently and are separated by 2.4 kb. A gene located between Ddc and amd expresses a 2.0-kb mRNA and appears to partially overlap the Ddc gene. The organization of these transcripts implies a complex series of events giving rise to the present pattern. The patterns of expression of these genes do not support a model of coordinate regulation, but are more consistent with a pattern of duplication and divergence to various related metabolic subspecialties. These data provide the first evidence for structural relationships among genes in the 37C cluster
    corecore