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ARTICLE

Regenerative responses of rabbit corneal endothelial cells to stimulation by
fibroblast growth factor 1 (FGF1) derivatives, TTHX1001 and TTHX1114

Jessica Weanta, David D. Eveletha, Amuthakannan Subramaniama, Jennifer Jenkins-Eveletha,
Michael Blaberb, Ling Lic, David M. Ornitzc , Asaf Alimardanovd, Trevor Broadte, Hui Donge, Vinay Vyase,
Xiaoyi Yange and Ralph A. Bradshawa,f

aTrefoil Therapeutics, Inc, San Diego, CA, USA; bDepartment of Biomedical Sciences, College of Medicine, Florida State University,
Tallahassee, USA; cDepartment of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA;
dTherapeutics Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD,
USA; eBiopharmaceutical Development Program, Advanced Technology Research Facility, Frederick National Laboratory for Cancer
Research (FNLCR), Leidos Biomedical Research Inc, Frederick, MD, USA; fDepartment of Physiology and Biophysics, University of
California, Irvine, Irvine, CA, USA

ABSTRACT
Utilising rabbit corneal endothelial cells (CEC) in three different paradigms, two human FGF1
derivatives (TTHX1001 and TTHX1114), engineered to exhibit greater stability, were tested as
proliferative agents. Primary CECs and mouse NIH 3T3 cells treated with the two FGF1 deriva-
tives showed equivalent EC50 ranges (3.3–24 vs.1.9–16. ng/mL) and, in organ culture, chemically
lesioned corneas regained half of the lost endothelial layer in three days after treatment with
the FGF1 derivatives as compared to controls. In vivo, following cryolesioning, the CEC mono-
layer, as judged by specular microscopy, regenerated 10–11days faster when treated with
TTHX1001. Over two weeks, all treated eyes showed clearing of opacity about twice that of
untreated controls. In all three rabbit models, both FGF1 derivatives were effective in inducing
CEC proliferation over control conditions, supporting the prediction that these stabilised FGF1
derivatives can potentially regenerate corneal endothelial deficits in humans.

Abbreviations: FGF1: fibroblast growth factor 1; CECs: corneal endothelial cells; FGFR: fibroblast
growth factor receptor; BME: b-mercaptoethanol; miL-3: murine recombinant interleukin-3;
pRCEC: primary rabbit corneal endothelial cell; FNC: fibronectin, collagen and albumin; FBS: foe-
tal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTS: 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; PES: phena-
zine ethosulfate; EdU: 5-ethynyl-2’-deoxyuridine; H(B)SA: human (bovine) serum albumin
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Introduction

Tissue growth in higher organisms is produced by
increases in cell size (hypertrophy) and cell number
(hyperplasticity). The stimuli that control and produce
these responses are basically external to the cell and
include interactions with extracellular matrix, other cells,
and soluble factors. Importantly, the ability of cells to
respond to these external signals, and the nature of
these responses, is dependent on a variety of conditions,
e.g. cell cycle status, differentiative state, etc. such that
the activation of a pathway in one cell type might lead
to proliferation while in another, produce apoptotic cell
death. One major element in the regulation of growth
events is the polypeptide growth factors which are, for

the most part, soluble ligands that are exported from
their cells of origin and then interact with target cells
through cell surface receptors (Bradshaw and Dennis
2011; Heldin et al. 2014). There are several types of
growth factor families based on the kind of receptor
they utilise. One of these, the fibroblast growth factor
receptor (FGFR) family, is composed of seven members
coded by four unique genes (Ornitz et al. 1996; Zhang
et al. 2006; Ornitz and Marie 2015) and the associated
ligand family of fibroblast growth factors (FGFs) con-
tains 22 members that are subdivided into seven groups.

FGF1 and FGF2, the first members of this family
to be identified (Gospodarowicz 1975; Thomas et al.
1980; Esch et al. 1985; Gimenez-Gallego et al. 1985)
constitute one group and are distinct from the other
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FGFs in that they lack signal peptides that direct their
export from cells via the endoplasmic reticulum/Golgi
pathway (Esch et al. 1985; Gimenez-Gallego et al.
1985; Jaye et al. 1986). A structural consequence of
this is that the cysteine residues of FGF1 and 2
remain in the reduced state and are subject to oxida-
tion or other modifications which result in inactiva-
tion once they leave the reducing environment of the
cytoplasm. However, they are protected to a consider-
able degree by interactions with heparin and heparan
sulphate proteoglycans, which function as co-factors
for receptor activation (Ornitz 2000; Monsonego-
Ornan et al. 2002; Cochran, Li, and Ferro 2009) The
biological consequence of FGF1 and FGF2 being
released in the reduced state is rapid loss of activity
in oxidising environments, consistent with the bio-
logical role of these FGFs in acute wound responses
and signalling over short spans of time and distance.

Because of the ability of FGF1 to stimulate full signal
transduction from all seven FGFRs, the only member of
the entire family able to do so (Ornitz et al. 1996; Zhang
et al. 2006), FGF1 derivatives that have been modified to
increase their stability and to eliminate their potential
inactivation due to thiol oxidation are attractive candi-
dates for pharmaceutical applications in germane regen-
erative situations (Xia et al. 2012, 2016). One such target
is the endothelial cell monolayer on the posterior side of
the cornea. While there is a slow loss of these cells dur-
ing the normal ageing process (Gipson 2013), certain
dystrophic conditions lead to more rapid losses and, left
untreated, such patients eventually lose the ability to
pump fluid out of the cornea leading to edoema, corneal
opacity and loss of vision (Vedana, Villarreal, and Jun
2016). Presently, the only therapeutic option for such
patients is the transplantation of healthy endothelial cells
from a normal donor, and tens of thousands of such
surgeries are performed every year (Ortega et al. 1991;
Brych et al. 2001; Afshari et al. 2006; Van Meter 2014).

To explore the feasibility of using suitable FGF1 deriv-
atives to treat corneal endothelial dystrophies pharma-
ceutically, several engineered FGF1s were evaluated, from
which TTHX1001 and TTHX1114 were chosen. Both
derivatives are characterised by three mutations and
exhibit increased stability and lowered susceptibility to
oxidation and proteolysis (Xia et al. 2012, 2016). The
applicability of these FGF1 derivatives for regenerating
CECs in three rabbit paradigms was tested.

Materials and methods

FGF1 derivatives

TTHX1001, containing K12V, C117V, and P134V
substitutions was expressed as the N-Phe, 140 amino

acid form of human FGF1 as described (Xia et al.
2012). Some preparations also had an N-terminal
extension containing a His-tag sequence for purifica-
tion purposes (Brych et al. 2001). TTHX1114, which
is characterised by C16S, A66C and C117V mutations,
where an intrachain disulphide bond is also formed
between C83 and the substituted cysteine at 66, was
prepared as the N-Phe 140 residue structure as above
and as the N-Met-FGF1 (141-amino acid form) by
the Frederick National Laboratory for Cancer
Research, Biopharmaceutical Development Program,
and supplied to Trefoil through a CRADA collabor-
ation with the NCATS TRND program. Both deriva-
tives are annotated as the 140-residue sequence (Jaye
et al. 1986). TTHX1001 has the most sensitive cyst-
eine at 117 (Ortega et al. 1991) replaced while
TTHX1114 has no free thiols.

Proliferation assays in tissue culture

The BaF3/FGFR1c assay was performed as previously
described (Ornitz et al. 1992; Xia et al. 2016). Briefly,
BaF3 murine lymphoid cells were transfected to
express the FGFR1c isoform (Ornitz et al. 1992;
1996). Cells were maintained in RPMI 1640 medium
(Sigma Chemical, St. Louis MO) supplemented with
10% newborn bovine serum (Sigma Chemical, St.
Louis MO), 50mM b-mercaptoethanol (BME), 0.5 ng/
mL murine recombinant interleukin-3 (mIL-3,
PeproTech Inc, Rocky Hill NJ), 2mM L-glutamine,
penicillin-streptomycin (“BaF3 culture medium”), and
G418 antibiotic (600 mg/mL). FGFR1c expressing BaF3
cells were washed twice in BaF3 “assay medium”
(“culture medium” lacking both mIL-3 and BME) and
plated at a density of 30,000 cells per well in a 96-
well assay plate in assay medium containing heparin
sulphate (1 mg/mL) and concentrations of recombin-
ant native FGF1 (#100-17A, PreproTech Inc.) and
TTHX1001 and TTHX1114 mutants ranging from 20
to 5120 pM. The cells were incubated for 36 h and
DNA synthetic activity was determined by adding 1
mCi of 3H-thymidine in 50mL of BaF3 assay medium
to each well. Cells were harvested after 4 h by filtra-
tion through glass fibre paper. Incorporated 3H-thy-
midine was counted on a MicroBeta plate scintillation
counter (PerkinElmer, Waltham MA).

Primary rabbit corneal endothelial cell (pRCEC)
cultures were established by digestion of excised
Descemet’s membranes from fresh rabbit corneas
with Accutase to release the endothelial cells and plat-
ing on fibronectin, collagen and albumin (FNC)
(Athenaes Cat:# 0407H)) coated tissue culture plastic
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using a modified Joyce’s medium, Opti-MEM supple-
mented with 8% foetal bovine serum (FBS), insulin-
transferrin-selenium, and Caþ ascorbate. For prolifer-
ation assays, second or third passage cultures were
seeded onto 96-well plates at cell density (2� 105

cells/well in 200mL culture medium) in media con-
taining 8% FBS and incubated at 37 ± 1 �C, 5 ± 1%
CO2 24 h before beginning treatment. On the second
day, after removal of culture medium, a serum free
modified Joyce’s media, Opti-MEM supplemented
with insulin-transferrin-selenium, and Ca2þ þ ascor-
bate was added into the plate (200mL/well) to induce
quiescence. The plate was incubated at 37 �C, 5% CO2

for 24 ± 2 h with a subsequent medium change.
Diluted samples (20 mL/well) and controls were trans-
ferred to the wells containing 200 mL of cells per well
and incubated at 37 ± 1 �C, 5 ± 1% CO2 for 24 ± 2 h.
After 5 days of medium changes and dosing of diluted
samples and controls, (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) (MTT) was added
(20 mL/well) and incubated for four h at 37 ± 1 �C and
5 ± 1 % CO2 and the sample absorbance at 490 nm
was read. The background absorbance readings in the
wells with medium were subtracted from the meas-
urements. The data were analysed by fitting to a 4-
parameter logistic function (Prism version 6).

The NIH/3T3 cell proliferation assay was per-
formed using the Promega CellTiter96VR AQueous
One Solution Cell Proliferation Assay with (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine
ethosulfate (PES) electron coupling reagent. NIH/3T3
cells were cultured in DMEM supplemented with 10%
heated-inactivated FBS and sodium pyruvate. The
cells were harvested and seeded into a 96-well plate at
cell density (3� 105 cells/well in 100 mL culture
medium) and incubated at 37 ± 1 �C, 5 ± 1% CO2

overnight. On the second day, after removal of cul-
ture medium, the quiescent medium (DMEM þ 25%
F17) was added into the plate (100mL/well). and incu-
bated at 37 �C, 5% CO2 for 6 ± 1 h. The diluted sam-
ples (20mL/well) and controls were transferred to the
wells of the 96-well plate containing 100 mL of cells
per well and incubated at 37 ± 1 �C, 5 ± 1% CO2 for
20 ± 1 h. After the 20-h incubation period, Cell
Titer96VR AQueous One Solution was added (20 mL/
well) and incubated for another four h at 37 ± 1 �C
and 5 ± 1 % CO2. The plate was read at 490 nm. The
background readings in the wells with medium were
subtracted from read outs of the sample wells. The
data were analysed using a 4-parameter logistic func-
tion (SoftMax Pro from Molecular Device).

The 5-ethynyl-20-deoxyuridine (EdU) click-it reac-
tion with Alexafluor 488 and subsequent staining with
Hoechst 33342 was performed as described previously
(Eveleth et al. 2018).

Proliferation assays in organ culture

Corneas from fresh rabbit eyes (Pel-Freez) were dis-
sected leaving about 2mm of sclera attached. Lesions
were produced by a variation of the method of
Ljubimov (Saghizadeh et al. 2010). This method uses
long chain alcohols such as heptanol or octanol to
remove cells without damaging the basement mem-
brane (Hatchell et al. 1983; Chung et al. 1998).
Corneas were placed in a hemispherical agar well and
excess fluid was removed using paper towel slivers
applied at the edge. A 4mm diameter piece of
Whatman #1 filter paper saturated with n-octanol was
placed in the centre of the cornea for 30 sec and the
cornea then placed in Dulbecco’s PBS to rinse.
Corneas were cultured in Opti-MEM without serum
as described above. At 24 h post lesioning, corneas
were randomised to various drug treatment groups.
Medium was changed daily. Lesion size was evaluated
using Trypan blue staining, which stains areas of the
cornea with endothelial damage but is not itself toxic
to the endothelial layer (Means et al. 1995; van
Dooren, Beekhuis, and Pels 2004) and quantitated as
% of corneal area using Image J (Abramoff,
Magalhaes, and Ram 2004). The methodology used in
this study was designed to preserve the function of
the corneal endothelial cells.

Ex vivo organ cultured corneas (n¼ 8 per group)
were lesioned as described above and immediately
exposed to TTHX1114 (100 pg/mL) for the indicated
duration of time followed by rinsing in culture media
and incubation for the remainder of the three-day
experiment in media without drug.

Endothelial regeneration in vivo: the corneal
cryofreeze model

All in vivo experiments were carried out at
Absorption Systems, San Diego CA. All aspects of
animal care and use were approved by their IACUC
(protocol #17C281Q1) including the lesioning of both
eyes, which was deemed acceptable because the
lesions create blurry central vision without impacting
peripheral vision and thus allow the animals to adapt
and function normally. In the rabbit cryogenic injury
model used (Okumura et al. 2011), New Zealand
white rabbits were anaesthetised with an
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intramuscular injection of ketamine (50mg/kg) and
xylazine (10mg/kg). One drop of topical proparacaine
hydrochloride anaesthetic (0.5%) was placed in each
of the animal’s eyes prior to the procedure.
Additional topical ocular anaesthesia was utilised dur-
ing the procedure as needed. The eyes were cleaned
with betadine and then rinsed with basic salt solution
(BSS). Both corneas of each rabbit were frozen using
a cryothermia unit (Brymill cryounit) (either 2 or
3mm) for 15–30 sec, killing the CECs in the central
cornea. The lesioning process was assessed by slit
lamp. Test and vehicle control articles were adminis-
tered via bilateral intracameral injections 1 h after the
freeze process. Animals were maintained under anaes-
thesia between the cornea freezing and test article
administration procedures. Additional anaesthesia was
administered as needed. A 30-gauge needle was
inserted parallel to the surface of the eye directly at
or above the limbus at the 11 o’clock position. The
needle was advanced into the anterior chamber and
the test article or vehicle control (approximately 10 mL
per injection) was administered. Immediately after the
cryogenic lesion procedure, each animal underwent
clinical ophthalmic examinations, fluorescein staining,
slit-lamp photography, and specular microscopy to
confirm the severity of the corneal lesion. Endothelial
cell counts and imaging specular microscopy using a
Konan specular microscope and endothelial camera
was performed on both eyes of all study animals at
baseline (prior to lesion creation/dosing), day 0, 3, 5,
7, 11, and 14 post-lesion/dosing. Clinical ophthalmic
examination (slit-lamp biomicroscopy) to measure
corneal clearing was performed on both eyes at base-
line (prior to creation of the lesion) including indirect
ophthalmoscopy, on day 0 and on days 3, 5, 7 (±2)
post lesion. Day 14 (±2) examinations were per-
formed immediately prior to euthanasia. Ophthalmic
examination scoring utilised a modified McDonald-
Shadduck scoring system (McDonald and
Shadduck 1977).

Results

Tissue culture reponses

To provide an initial comparison of the survival/pro-
liferative activity of the TTHX1001, TTHX1114 and
native FGF1, the three ligands were assayed in the
presence of heparin with BaF3 cells modified to
express FGFR1c3 (Figure 1). BaF3-FGFR1c cells show
increasing survival/mitogenic response as measured
by 3H-thymidine incorporation with increasing wild
type FGF1 protein concentrations, with maximum

stimulation occurring at the highest tested concentra-
tion. Both TTHX1001 and TTHX1114 exhibited �15-
fold greater activity compared to wild type FGF1, and
the BaF3-FGFR1c cells approached maximum sur-
vival/growth stimulation with FGF1 mutant concen-
trations of 5 ng/mL (320 pM). These findings indicate
that in this test (with one FGFR receptor type), both
stabilised derivatives are approximately an order of
magnitude more potent than native FGF1.

The stimulatory effects of TTHX1001 and
TTHX1114 on dissociated cultures of pRCECs was
confirmed using the MTT assay (van Meerloo,
Kaspers, and Cloos 2011) (Figure 2a). The MTT assay
does not assess growth responses directly but rather
measures the conversion of the tetrazolium salt to for-
mazan by mitochondrial dehydrogenases, which can
be assayed colorimetrically. Although the MTT assay
is commonly used to measure changes in cell number
in proliferative assays, it can be subject to some vari-
ation (Liu and Dalgleish 2009) so the same responses
were also monitored by EdU incorporation, which is
a measure of DNA synthesis (Figure 2(b))
(Chehrehasa et al. 2009). A similar stimulatory effect
of TTHX1114 was observed in pRCECs using EdU
incorporation. The MTT and EdU assays showed a
similar dose response curve in TTHX1114 dosed cells.
Cells that were dosed with 100 ng/mL were shown to
have greatest metabolic activity and highest EdU

Figure 1. Stimulation of 3H-thymidine incorporation into the
murine lymphoid cell line, BaF3, expressing FGFR1c by recom-
binant native FGF1, TTHX1001 and TTHX1114. DNA synthetic
activity was determined by adding 1 mCi of 3H-thymidine in
50mL and the harvested cells counted on a MicroBeta plate
scintillation counter (PerkinElmer, Waltham MA). Black closed
circles: native FGF1; open triangle: TTHX1114; open circles:
TTHX1001 (N¼ 3 per a group).
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incorporation ratio. Using the same preparation of
engineered FGF1 [TTHX1114(His-NF140)], the
observed EC50 values determined by the two protocols
were essentially the same: 4.56 and 3.37 ng/mL (Table
1). The results between the two methods, MTT and
EdU, differ by 27% which is well within validated
standards for a bioassay assay thus confirming that
with pRCECs, the two methods can be used inter-
changeably. Similar results were observed with the
NIH/3T3 cells (data not shown).

Using the observed EC50s as indices, these
responses were compared to those of mouse NIH 3T3
cells (Table 1), a well-validated standard for FGF-
induced proliferation assays. The EC50s observed for
the four FGF1 samples with pRCECs ranged from 3.3
to 24 ng/mL with MTT or EdU. These were compar-
able to the EC50 values for the FGF1 derivatives act-
ing on the NIH/3T3 cells (1.9–16 ng/mL) including
wild type FGF1, which yielded a value of 12.6 ng/mL
(Figure 2(d)), as determined with MTT. The samples

tested in Figure 2(a) included two different prepara-
tions of TTHX1114(NM-141), TTHX1114(His-NF-
140) and TTHX1001 (His-NF-140) and all were in

Figure 2. Dose response of rabbit primary corneal endothelial cells (pRCECs) and mouse NIH/3T3 cells to FGF1 derivatives,
TTHX1001 and TTHX1114, in tissue culture. Standard deviation was used to plot variances. (a) pRCEC responses to various deriva-
tives as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); black filled in circles: TTHX1114 (NM141),
Lot 70720; open circles: TTHX1114 (NM141), Lot 70321; filled in stars: TTHX1114 (His-NF140); and open triangles: TTHX1001 (His-
NF140) (N¼ 4 per a group). (b) pRCEC response to TTHX1114 (His-NF140) as measured by 5-ethynyl-2’-deoxyuridine (EdU) incorp-
oration; (N¼ 3 per a group). (c) Dose response of mouse NIH 3T3 cell proliferation by TTHX1114 (NM141) in PBS (closed circles)
and in the presence of 0.1% recombinant (closed triangles) or serum-derived (open squares) human serum albumin (HSA) as
measured by MTT; (N¼ 3 per a group) (d) Dose response of mouse NIH/3T3 cells to TTHX1114(NM141), Lot 70321 in PBS (open
squares) and wt FGF1 in PBS/0.1% bovine serum albumin (closed circles)(no heparin) as measured by MTT (N¼ 3 per a group).

Table 1. EC50 responses of primary rabbit corneal endothe-
lial cells and mouse NIH/3T3 cells to TTHX1001
and TTHX1114.

Compound Drug Lot Cell Type Buffer
EC50
ng/mL Assay

TTHX1114(NM141) RD20170720 pRCECa PBS 15.07 MTT
TTHX1114(NM141) RD20170321 pRCECa PBS 18.8 MTT
TTHX1114(His-NF140) 02012014 pRCECa Ac 4.56 MTT
TTHX1001(His-NF140) 12072014 pRCECa PBS 24.14 MTT
TTHX1114(His-NF140) 02012014 pRCECa Ac 3.37 EdU
TTHX1114(NM141) RD20170720 3T3b PBS 12.08 MTT
TTHX1114(NM141) RD20170720 3T3b PBS/rHSAd 1.87 MTT
TTHX1114(NM141) RD20170720 3T3b PBS/sHSAe 2.44 MTT
TTHX1114(NM141) RD20170321 3T3b PBS 16.226 MTT
wtFGF1 RD20170321 3T3b PBS 12.61 MTT
aPrimary rabbit corneal endothelial cells
bMouse NIH/3T3 cells
cBuffer A: 50mM sodium phosphate, 100mM NaCl, 10mM ammonium
sulphate, 2mM DTT, and 0.5mM EDTA (pH 7.5)
dPBS with 0.1% recombinant human serum albumin
ePBS with 0.1% serum derived human serum albumin.
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PBS except TTHX1114(His-NF-140), which was in
50mM sodium phosphate, 100mM NaCl, 10mM
ammonium sulphate, 2mM DTT, and 0.5mM EDTA
(pH 7.5) (Buffer A). This same buffer was used for
the TTHX1114 (His-NF-140) measurement using
EdU (Figure 2(b)). The importance of buffer compos-
ition is also underscored by the 3T3 cell assays in
which the excipient human serum albumin (0.1%)
was added as derived from both recombinant (r) and
serum(s) sources (Figure 2(c)). Cells dosed with
RD20170720 in PBS had an EC50 of 12.08 ng/mL and
cells dosed with RD20170720 in PBS with either
rHSA or sHSA had EC50s of approximately 2 ng/mL.
This clearly shows that the presence of HSA impacted
the EC50 values measured by about an order of mag-
nitude. This difference in EC50 between those cells
dosed with TTHX114 in PBS versus PBS plus HSA
can largely be attributed to adsorption of TTHX1114
to surfaces. When a carrier protein such as HSA is
added to the formulation, the surface of the plastic is
“blocked” decreasing the absorption of protein to the
surface and thereby greatly lowering the overall con-
centration of protein in solution.

Response to FGF1 derivatives by endothelial
lesions introduced in organ culture

Since the engineered FGF1s potently stimulate the
proliferation of corneal endothelial cells in culture,
the ability of TTHX1001 and TTHX1114 to accelerate
the recovery and regeneration of the corneal endothe-
lial layer in situ in rabbit organ culture was tested. A
modification of the corneal organ culture and lesion-
ing process developed in the Ljubimov laboratory was
used (Saghizadeh et al. 2010) whereby lesions are
introduced using filter paper discs saturated in
n-octanol.

This model was also used to determine if the accel-
eration of healing by TTHX1114(NF140) required

constant exposure to drug as measured in Figure 3 or
if a brief exposure was sufficient. Corneas lesioned
and then treated with TTHX1114(NF140) for 60min
followed by incubation in organ culture for up to 72 h
demonstrated that acceleration of healing was not dif-
ferent from corneas incubated in the continuous pres-
ence of drug for 72 h (Figure 4). Corneas incubated
for 3 days without drug healed 58% of the lesion area
while corneas incubated for 1 h followed by the
remaining 3 days without drug, 24 h with drug fol-
lowed by the remaining 3 days without drug, or 3 days
with drug healed 85%, 83% and 86% (respectively). A
one-way ANOVA was performed to compare the
mean results between the groups. The results
(p< 0.01) demonstrate that there is a significant dif-
ference between the means of the groups. Using
Tukey’s multiple comparisons test there is a signifi-
cant difference between drug treated and untreated
(p< 0.01) but no significant difference between drug
treated groups (p� 0.98). This indicates that one-hour
exposure to drug is equivalent to 3 days of continu-
ous exposure.

Repair of corneal endothelial damage (cryogenic
injury) in vivo

In the rabbit in vivo corneal cryogenic injury model,
TTHX1001 and TTHX1114, when administered as a sin-
gle intracameral injection following cryogenic lesioning,
accelerated the healing of the damaged corneal endothe-
lium as judged by specular microscopy (Figure 5) and
measurements of corneal opacity (Figure 6). As shown
in Figure 5, the ordered hexagonal array, characteristic
of the intact corneal endothelium, appeared in the
lesioned eye following injection of 100ng of TTHX1001
in just 3days. In the treated eye, both the density of cells
and the hexagonality of the cell packing returned to nor-
mal in the treated eye at 7 days, with the average cell
areas not returning to normal until 14 days (xzc). In the

Table 2. TTHX1001 induced cornea endothelial cell recovery following cryolesioning in the rabbit as measured by
specular microscopy over a period of two weeks.
Endothelial cell characteristics

Cell density, cells/mm2 % Hexagonal Average cell area, um2

TTHX1001 Veh TTHX1001 Veh TTHX1001 Veh

Baseline Animal #1 3083 3250 59 63 325 308
Animal #2 3332 3268 54 63 300 307

Day 3 Animal #1 2639 nd 38 nd 379 nd
Animal #2 nd nd nd nd nd nd

Day 7 Animal #1 2612 nd 51 nd 385 nd
Animal #2 2862 nd 40 nd 350 nd

Day 14 Animal #1 3528 3545 54 36 285 283
Animal #2 3069 2909 53 47 327 344

“nd” refers to No Data due to the inability of the specular microscope to identify discrete CEC borders. This resolves by day 7 in drug
treated and day 14 in vehicle treated animals allowing for countable cells.
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vehicle treated eye, cell numbers and areas returned to
normal at 14days but the % hexagonality remained low.
Unlike humans, rabbits will regenerate damaged endo-
thelium in about two weeks without any treatment
(Figure 5), so the rate of healing by TTHX1001 observed
here is 5 times faster than the natural process.

Treatment with TTHX1114 also improved clearing of
corneal opacity from involvement of the entire thickness
of the stroma (3þ) following injury to some loss of trans-
parency with only the epithelium and/or involvement of
the anterior half of the stroma (1þ) by Day 14 (Figure 6).
In contrast, corneal clearing in contralateral control eyes
that received only vehicle progressed to some loss of trans-
parency with cloudiness that extended past the anterior

half of the stroma (2þ) by Day 14. There was significant
acceleration of improvement in opacity compared to
contralateral vehicle control eyes at Day 5 for the 1,000ng/
eye and 5,000ng/eye doses of TTHX1114 and at Day 7
and 14 for all doses. There was no clear differentiation of
doses between 100 and 5,000ng/eye, suggesting that all
doses are at the top of the dose response curve. Both
TTHX1001 and TTHX1114 were equally effective in the
corneal clearing effects.

Discussion

While FGF1 is well known to stimulate proliferation
of a wide variety of target cells because of its ability

Figure 3. CEC recovery in the corneal organ culture model following chemical lesioning. (a) Top row, left: Schematic representa-
tion of the semi spherical agar well used to hold the cornea, posterior side up; middle: untreated cornea in situ in agar well; right:
cornea after exposure to 4mm filter paper disc saturated in n-octanol inserted into the centre; Bottom row, left to right: trypan
blue stained corneas at 24, 48, and 72 h post-lesioning. (b) Progression of corneal wound healing for the same time period in
serum free medium (open square with a solid line), medium with 8% serum (black filled square with long dash lines), and
medium with TTHX1001 (100 ng/mL) (N¼ 5 per group) (black filled triangle with medium dash lines). �p< 0.05.
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to activate all seven FGFRs at pM affinity (Ornitz
et al. 1996; Zhang et al. 2006), its practical utility is
severely compromised by low thermodynamic stabil-
ity, rapid inactivation at physiologic temperature, sus-
ceptibility to proteolysis, and the need for heparin as
a stabilising excipient and co-factor (Copeland et al.
1991). However, structural analyses (Zhu et al. 1991;
Blaber, DiSalvo, and Thomas 1996; Ogura et al. 1999)
have provided a clearer insight into the bases of these
pharmaceutically undesirable properties and computa-
tional modelling has led to the production of a num-
ber of engineered human FGF1 variants that address
these limitations to varying degrees (Brych et al. 2001;
Xia et al. 2012, 2016). Two of these, TTHX1001 and
TTHX1114, each characterised by three amino acid
substitutions, were chosen for evaluation in these rab-
bit CEC proliferation/regeneration studies, because
they were less prone to cysteine oxidation, had stabi-
lised conformations and reduced susceptibility to pro-
teolysis, and improved potency. TTHX1001 (K12V,
C117V, P134V) has two stabilising mutations and a
substitution of the most susceptible cysteine residue
(Ortega et al. 1991) and TTHX1114 (C16S, A66C,

Figure 4. Effect of brief vs sustained treatment of chemically
lesioned rabbit corneas. Corneas lesioned as in Figure 3 were
exposed to vehicle only for three days, 100 pg/mL of
TTHX1114 only for the first h followed by vehicle the remain-
der of the 3 days, 100 pg/mL of TTHX1114 only for the first
24 h followed by vehicle the remainder of the 3 days, or con-
tinuous exposure to drug for 3 days. The area of the endothe-
lial lesion was quantitated using Image J. �p< 0.01 vs no
drug. Tukey’s multiple comparisons test was performed and
found a significant difference between the drug treated and
vehicle groups. There is no significant difference between the
drug treated groups (N¼ 6 per a group).

Figure 5. TTHX1001 induced cornea endothelial cell recovery following cryolesioning in the rabbit as measured by specular
microscopy over a period of two weeks. The green lines are the outlines of the CECs as determined by the specular microscope;
the absence of green lines indicates that the specular microscope could not identify a pattern of CEC borders. For cell counts, hex-
agonality and cell areas see Table 2.
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C117V) lacks any thiol groups (A66C-C83 are oxi-
dised to form an internal disulphide bond). These
derivatives are essentially fully active in the absence of
heparin although they can still bind it. When they are
bound to heparin, they are only minimally activated
compared to untreated controls in contrast to native
FGF1, which requires heparin for significant activity.

The recombinant FGF1 derivatives used in these
studies were expressed in bacterial hosts because
FGF1 requires no co/post-translational modifications.
Two strategies were employed. On the one hand, both
TTHX1001 and TTHX1114 were expressed in a con-
struct that contained an N-terminal extension with an
enterokinase sensitive sequence immediately adjacent
to the N-terminal Phe. Processing of this precursor
with enterokinase yielded the 140 amino acid form of
FGF1 with an N-terminal Phe. In a few of the experi-
ments reported, the peptide was not removed, and
these derivatives thus contained the His-Tag sequence
used for purification (Hochuli et al. 1988). The other
route employed used a construct in which the initi-
ator f-Met codon was placed immediately upstream
from the Phe codon. Bacterial vectors can remove the
formyl group but, as with all other organisms, cannot

cleave the Met-Phe bond (Bradshaw, Brickey, and
Walker 1998), yielding sequences of 141 amino acids
with N-terminal Met residues. As judged by the
stimulation of cultured pRCECs and mouse NIH 3T3
cells, the presence of the His-tag or the extra Met
residue had no significant effect on
TTHX1114 function.

Comparison of the responses of rabbit primary
CECs and mouse NIH/3T3 cells, considered to be a
mitogenic standard for cell proliferation assays, with
both derivatives and native FGF1 (with and without
heparin) indicated that the derivatives performed as
well or better than native FGF1 (with heparin). In a
direct comparison assayed with BaF3-FGFR1c cells
(Figure 1), both derivatives showed higher levels of
activity at equivalent concentrations. On average the
EC50 value for both CECs and NIH/3T3 cells for
TTHX1001 and TTHX1114 was around 10–15 ng/mL.
Interestingly, the buffer in which these derivatives
were assessed did appear to make a significant differ-
ence in the EC50 values observed, with PBS clearly
being inferior to 50mM sodium phosphate, 100mM
NaCl, 10mM ammonium sulphate, 2mM dithiothrei-
tol, and 0.5mM EDTA (pH 7.5) (Table 1). Similarly,

Figure 6. Cornea clearing by TTHX agents in the in vivo rabbit cryolesion model. New Zealand white rabbits were subjected to
corneal cryolesioning in both eyes with one eye treated with a single intracameral injection of drug and one with vehicle (25mL)
within 2 h of lesioning. Corneas were scored at 3-, 5-, 7-, and 14-days post injury. Differences between means tested using Mann-
Whitney. All comparisons to vehicle p< 0.05 at days 5, 7, and 14, Scoring: 0 ¼ normal 1¼ some loss of transparency; only epithe-
lium and anterior stroma involved 2¼ involvement of entire thickness of stroma; underlying structures barely visible
3¼ involvement of entire thickness of stroma; underlying structures cannot be seen black filled in circles with solid lines: vehicle
(N¼ 25); black filled in triangles with solid lines: TTHX1001(NF140), 100 ng (N¼ 4); open circles with long dash lines: TTHX1114
(NM141), 100 ng (N¼ 6); open triangles with medium dash lines: TTHX1114 (NM141), 1000 ng (N¼ 6); filled in squares with a
white X and short dash lines: TTHX1114 (NM141), 5000 ng (N¼ 6).
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the presence of the excipient, human serum albumin,
also lowered the EC50 by about an order of magni-
tude. This effect may be related to preventing absorp-
tion of the drug on glass surfaces.

The intact corneal endothelium is a hexagonal
array that is characterised by tight junctions, and it is
these structures that are detected by the Konan specu-
lar microscope (see Figure 5). When lesions are intro-
duced, as was the case in these studies, the wound
healing responses observed may be due to the prolif-
eration of new cells and/or migration of already
formed cells into the centre of the cornea from the
periphery. As the lesion disrupts the contact inhib-
ition that stabilises the monolayer, this may allow
arrested proliferation to recur and thus be a contribu-
ting factor to the wound healing processes.
Transplantation studies with fragments of Descemet’s
(Baydoun et al. 2018; Birbal et al. 2018) indicate that
migration is also a major factor in sealing corneal
lesions, being able to cover significant amounts of the
disrupted area.

Although human CECs act largely as if they are
post-mitotic entities (Van den Bogerd et al. 2018), it
is now well established by in vitro experiments that
they can proliferate and can be expanded for experi-
mentation and transplantation (Toda et al. 2017;
Okumura et al. 2018; Parekh et al. 2019; Yam et al.
2019; Frausto et al. 2020; Sie et al. 2020; Numa et al.
2021; Schl€oetzer-Schrehardt et al. 2021), that they
retain this ability in organ culture (Treffers 1982;
Senoo and Joyce 2000; Patel and Bourne 2009;
Eveleth et al. 2020) and that CECs from corneas of
Fuchs patients retain this ability (Zaniolo et al. 2012).
Thus, investigations with human CECs in both tissue
and organ culture are feasible and are being pursued
(Eveleth et al. 2020). Rabbit CECs, on the other hand,
can regenerate themselves (see Figure 5). However,
they are susceptible to stimulation, in this case by
FGF1 derivatives, and thus provide an animal model
for studying these processes, albeit imperfect. The
lesions introduced in either the organ culture or
in vivo experiments are not analogous to the losses in
human corneal dystrophies, but they do provide use-
ful systems for assessing the activity of the FGF1
derivatives. The underlying cause(s) for the loss of
CECs that characterise Fuchs endothelial cell dys-
trophy and related disorders are not fully understood
(Zhang, McGhee, and Patel 2019). There are clear
genetic components to many of the conditions, but
these affect many cellular processes and do not as yet
provide clear targets.

FGFs are clinically proven regenerative agents for
oral mucositis (Yuan and Sonis 2014) and wound
healing (Zubair and Ahmad 2019). FGF1 and 2 are
endogenous stimulators of CECs that are used as a
standard component of CEC culture medium (Lee,
Jung, and Heur 2018; Lee et al. 2020) and are both
protective (Birbal et al. 2018) and potently mitogenic
for CECs (Gospodarowicz, Mescher, and Birdwell
1977; Savion et al. 1982; Baird et al. 1985; Rieck et al.
1995, 2003; Dannowski et al. 2005; Lee, Jung, and
Heur 2018). FGFs are known to induce migration
(Lee and Kay 2006) and proliferation in bovine
(Thalmann-Goetsch, Engelmann, and Bednarz 1997)
and human (Dannowski et al. 2005) CECs and to
stimulate endothelial wound healing in vitro and
in vivo (Landshman et al. 1987; Schilling-Schon et al.
2000) thus making them candidates for regenerative
therapy. However, utility of these proteins as drugs
has been hampered by instability (Benington et al.
2020) TTHX1001 and TTHX1114 being stabilised
derivatives (Xia et al. 2012, 2016) suggest that they
are candidates for a pharmaceutical approach to treat-
ing human corneal endothelial dystrophies.

FGF1 and its analogs are not the only agents that
may impact the proliferation and migration of CECs.
Other growth factors (FGF2, EGF, etc) (Thalmann-
Goetsch, Engelmann, and Bednarz 1997) as well as
small molecules including p38 MAP kinase inhibitors
(Nakahara et al. 2018) and Rho kinase inhibitors
(Schl€otzer-Schrehardt et al. 2021; Okumura et al.
2016) have been reported to stimulate proliferation
and or migration. The Rho kinase inhibitor netarsudil
has been clinically tested in humans and does not
appear to impact CEC density after 6months of treat-
ment (Price, Feng, and Price 2021) although it has
some effect on corneal thickness in FECD patients
(Price and Price 2021). The reported proliferative
effects of Rho kinase inhibitors on CECs in vitro are
not large and the effect of Y-27632 is not reprodu-
cible in all laboratories (Meekins et al. 2016), while
the proliferative effects of FGF1 in vitro are substan-
tial and have been reproduced in several laboratories.
In a direct comparison of stimulation of migration
in vitro, FGF2 stimulated migration more strongly
than Y-27632 (Lee and Kay 2006). Currently, a num-
ber of investigators are examining the impact of ripa-
sudil on CEC migration in the context of Descemet’s
stripping only surgery (DSO) as an alternative to
transplantation (Macsai and Shiloach 2019; Moloney
et al. 2021). While there is not a direct comparison of
FGF1 to Rho kinase inhibitors in vitro or in vivo,
comparison of the magnitude of the effects in
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separate experiments suggests that FGF1 is at least as
effective as Rho kinase inhibitors and may potentially
be more so, particularly in stimulating proliferation.

These studies also suggest that the administration
of TTHX1114 by intracameral injection may be feas-
ible in humans. The robust response of the rabbit
in vivo cryogenic injury model to a single injection of
TTHX1114 combined with the organ culture data
showing that exposure of the corneas to drug for one
hour is equivalent to continuous exposure for 3 days
support the hypothesis that intracameral injection
should be efficacious.

One concern for the use of FGFs for stimulation of
CECs is the potential for inducing endothelial-mesen-
chymal transition (EnMT). FGF2 has been shown to
induce some markers of EnMT in CECs although not
the classical a-SMA characteristic of EMT (Lee, Jung,
and Heur 2018; Lee et al. 2020) and the spectrum of
FGF receptors stimulated by FGF1 and FGF2 have
significant overlap. However, the transition to a mes-
enchymal phenotype is accompanied by dramatic
changes in cell morphology not seen either in culture
or in vivo in these experiments. Further, toxicology
studies of TTHX1114 administered via the intracam-
eral route have not shown any drug-induced abnor-
malities in the endothelial layer (D.D. Eveleth, J
Weant, S. Pizzuto, manuscript in preparation).
TTHX1114 is currently in phase 2 clinical studies for
endothelial dysfunction (NCT04520321,
NCT04676737).
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