89 research outputs found

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    No full text
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5×1034 cm-2s-1. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13-14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment.0CMS Collaborationinfo:eu-repo/semantics/publishe

    High Risk of Anal and Rectal Cancer in Patients With Anal and/or Perianal Crohn’s Disease

    No full text
    International audienceBackground & AimsLittle is known about the magnitude of the risk of anal and rectal cancer in patients with anal and/or perineal Crohn’s disease. We aimed to assess the risk of anal and rectal cancer in patients with Crohn’s perianal disease followed up in the Cancers Et Surrisque Associé aux Maladies Inflammatoires Intestinales En France (CESAME) cohort.MethodsWe collected data from 19,486 patients with inflammatory bowel disease (IBD) enrolled in the observational CESAME study in France, from May 2004 through June 2005; 14.9% of participants had past or current anal and/or perianal Crohn’s disease. Subjects were followed up for a median time of 35 months (interquartile range, 29–40 mo). To identify risk factors for anal cancer in the total CESAME population, we performed a case-control study in which participants were matched for age and sex.ResultsAmong the total IBD population, 8 patients developed anal cancer and 14 patients developed rectal cancer. In the subgroup of 2911 patients with past or current anal and/or perianal Crohn’s lesions at cohort entry, 2 developed anal squamous-cell carcinoma, 3 developed perianal fistula–related adenocarcinoma, and 6 developed rectal cancer. The corresponding incidence rates were 0.26 per 1000 patient-years for anal squamous-cell carcinoma, 0.38 per 1000 patient-years for perianal fistula–related adenocarcinoma, and 0.77 per 1000 patient-years for rectal cancer. Among the 16,575 patients with ulcerative colitis or Crohn’s disease without anal or perianal lesions, the incidence rate of anal cancer was 0.08 per 1000 patient-years and of rectal cancer was 0.21 per 1000 patient-years. Among factors tested by univariate conditional regression (IBD subtype, disease duration, exposure to immune-suppressive therapy, presence of past or current anal and/or perianal lesions), the presence of past or current anal and/or perianal lesions at cohort entry was the only factor significantly associated with development of anal cancer (odds ratio, 11.2; 95% CI, 1.18-551.51; P = .03).ConclusionsIn an analysis of data from the CESAME cohort in France, patients with anal and/or perianal Crohn’s disease have a high risk of anal cancer, including perianal fistula–related cancer, and a high risk of rectal cancer

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for the Z boson decay to ττμμ\tau\tau\mu\mu in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first search for the Z boson decay to ττμμ\tau\tau\mu\mu at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb1^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z \to ττμμ\tau\tau\mu\mu to Z \to 4μ\mu branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators

    Searches for Higgs boson production through decays of heavy resonances

    No full text
    The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance, with proton-proton collision data collected at s= \sqrt{s}= 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed.The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance, with proton-proton collision data collected at s\sqrt{s} = 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed

    Observation of the Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- decay and studies of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first observation of the decay Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- and measurement of the branching ratio of Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- to Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^- are presented. The J/ψ\psi and ψ\psi(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb1^{-1}. The branching fraction ratio is measured to be B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^-)/B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^-) = 0.840.19+0.21^{+0.21}_{-0.19} (stat) ±\pm 0.10 (syst) ±\pm 0.02 (B\mathcal{B}), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon mass and natural width are also presented, using the Ξbπ+\Xi_\mathrm{b}^-\pi^+ final state, where the Ξb\Xi^-_\mathrm{b} baryon is reconstructed through the decays J/ψΞ\psi \Xi^-, ψ\psi(2S)Ξ\Xi^-, J/ψΛ\psi \LambdaK^-, and J/ψΣ0\psi \Sigma^0K^-. Finally, the fraction of the Ξb\Xi^-_\mathrm{b} baryons produced from Ξb0\Xi_\mathrm{b}^{\ast{}0} decays is determined

    Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H \to aa \tobbˉbbˉ\mathrm{b\bar{b}b\bar{b}}. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 <\ltmam_\mathrm{a}<\lt 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp \to WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction B\mathcal{B}(H \to aa \to bbˉbbˉ\mathrm{b\bar{b}b\bar{b}}). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma=m_\mathrm{a} = 20 GeV to 0.36 for ma=m_\mathrm{a} = 60 GeV, complementing other measurements in the μμττ\mu\mu\tau\tau, ττττ\tau\tau\tau\tau and bb\ell\ell (=\ell= μ\mu,τ\tau) channels

    Observation of the J/ψ\psi \to μ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction

    Search for new resonances decaying to pairs of merged diphotons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for an extended Higgs sector with two new particles, X and ϕ\phi, in the process X \toϕϕ\phi\phi\to(γγ)(γγ)(\gamma\gamma)(\gamma\gamma). Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s\sqrt{s} = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb1^{-1}. No evidence of such resonances is seen. Upper limits are set on the production cross section versus the resonance masses, representing the most sensitive search in this channel
    corecore