5,597 research outputs found
Two-Photon Beatings Using Biphotons Generated from a Two-Level System
We propose a two-photon beating experiment based upon biphotons generated
from a resonant pumping two-level system operating in a backward geometry. On
the one hand, the linear optical-response leads biphotons produced from two
sidebands in the Mollow triplet to propagate with tunable refractive indices,
while the central-component propagates with unity refractive index. The
relative phase difference due to different refractive indices is analogous to
the pathway-length difference between long-long and short-short in the original
Franson interferometer. By subtracting the linear Rayleigh scattering of the
pump, the visibility in the center part of the two-photon beating interference
can be ideally manipulated among [0, 100%] by varying the pump power, the
material length, and the atomic density, which indicates a Bell-type inequality
violation. On the other hand, the proposed experiment may be an interesting way
of probing the quantum nature of the detection process. The interference will
disappear when the separation of the Mollow peaks approaches the fundamental
timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008
Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate
We study the coexisting smectic modulations and intra-unit-cell nematicity in
the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their
spatial components separately, we identified 2\pi topological defects
throughout the phase-fluctuating smectic states. Imaging the locations of large
numbers of these topological defects simultaneously with the fluctuations in
the intra-unit-cell nematicity revealed strong empirical evidence for a
coupling between them. From these observations, we propose a Ginzburg-Landau
functional describing this coupling and demonstrate how it can explain the
coexistence of the smectic and intra-unit-cell broken symmetries and also
correctly predict their interplay at the atomic scale. This theoretical
perspective can lead to unraveling the complexities of the phase diagram of
cuprate high-critical-temperature superconductors
Quantum oscillations in from an incommensurate -density wave order
We consider quantum oscillation experiments in
from the perspective of an incommensurate
Fermi surface reconstruction using an exact transfer matrix method and the
Pichard-Landauer formula for the conductivity. The specific density wave order
considered is a period-8 -density wave in which the current density is
unidirectionally modulated. The current modulation is also naturally
accompanied by a period-4 site charge modulation in the same direction, which
is consistent with recent magnetic resonance measurements. In principle Landau
theory also allows for a period-4 bond charge modulation, which is not
discussed, but should be simple to incorporate in the future. This scenario
leads to a natural, but not a unique, explanation of why only oscillations from
a single electron pocket is observed, and a hole pocket of roughly twice the
frequency as dictated by two-fold commensurate order, and the corresponding
Luttinger sum rule, is not observed. However, it is possible that even higher
magnetic fields will reveal a hole pocket of half the frequency of the electron
pocket or smaller. This may be at the borderline of achievable high field
measurements because at least a few complete oscillations have to be clearly
resolved.Comment: 8 pages, 7 figure
Commensurate period Charge Density Modulations throughout the Pseudogap Regime
Theories based upon strong real space (r-space) electron electron
interactions have long predicted that unidirectional charge density modulations
(CDM) with four unit cell (4) periodicity should occur in the hole doped
cuprate Mott insulator (MI). Experimentally, however, increasing the hole
density p is reported to cause the conventionally defined wavevector of
the CDM to evolve continuously as if driven primarily by momentum space
(k-space) effects. Here we introduce phase resolved electronic structure
visualization for determination of the cuprate CDM wavevector. Remarkably, this
new technique reveals a virtually doping independent locking of the local CDM
wavevector at throughout the underdoped phase diagram of the
canonical cuprate . These observations have significant
fundamental consequences because they are orthogonal to a k-space (Fermi
surface) based picture of the cuprate CDM but are consistent with strong
coupling r-space based theories. Our findings imply that it is the latter that
provide the intrinsic organizational principle for the cuprate CDM state
A New Era in High-energy Physics
In TeV-scale gravity, scattering of particles with center-of-mass energy of
the order of a few TeV can lead to the creation of nonperturbative, extended,
higher-dimensional gravitational objects: Branes. Neutral or charged, spinning
or spinless, Einsteinian or supersymmetric, low-energy branes could
dramatically change our picture of high-energy physics. Will we create branes
in future particle colliders, observe them from ultra high energy cosmic rays,
and discover them to be dark matter?Comment: 8 pages, 2 figures. Essay submitted on Mar 26, 2002 to the Gravity
Research Foundation. Awarded the third prize in the 2002 GRF competitio
Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation
We report on the non-trivial nanoscale kinetics of the deposition of novel
complex oxide heterostructures composed of a unit-cell thick correlated metal
LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good
crystallinity and surface morphology maintained over the large number of
layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To
elucidate the physics behind the growth, the temperature of the substrate and
the deposition rate were varied over a wide range and the results were treated
in the framework of a two-layer model. These results are of fundamental
importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure
Reading In English By Children In Korea: Frequency, Effectiveness, And Barriers
A study of the English non-textbook reading of fourth graders in Korea revealed that about 80% had done at least some reading, confirming that there is enthusiasm for English reading. About half, however, had read only five books or fewer. Non-readers said that the reason they did not read in English was the difficulty of English texts. Those who read more did better on a test of English spelling and vocabulary
Machine Learning in Electronic Quantum Matter Imaging Experiments
Essentials of the scientific discovery process have remained largely
unchanged for centuries: systematic human observation of natural phenomena is
used to form hypotheses that, when validated through experimentation, are
generalized into established scientific theory. Today, however, we face major
challenges because automated instrumentation and large-scale data acquisition
are generating data sets of such volume and complexity as to defy human
analysis. Radically different scientific approaches are needed, with machine
learning (ML) showing great promise, not least for materials science research.
Hence, given recent advances in ML analysis of synthetic data representing
electronic quantum matter (EQM), the next challenge is for ML to engage
equivalently with experimental data. For example, atomic-scale visualization of
EQM yields arrays of complex electronic structure images, that frequently elude
effective analyses. Here we report development and training of an array of
artificial neural networks (ANN) designed to recognize different types of
hypothesized order hidden in EQM image-arrays. These ANNs are used to analyze
an experimentally-derived EQM image archive from carrier-doped cuprate Mott
insulators. Throughout these noisy and complex data, the ANNs discover the
existence of a lattice-commensurate, four-unit-cell periodic,
translational-symmetry-breaking EQM state. Further, the ANNs find these
phenomena to be unidirectional, revealing a coincident nematic EQM state.
Strong-coupling theories of electronic liquid crystals are congruent with all
these observations.Comment: 44 pages, 15 figure
- …