5,597 research outputs found

    Two-Photon Beatings Using Biphotons Generated from a Two-Level System

    Full text link
    We propose a two-photon beating experiment based upon biphotons generated from a resonant pumping two-level system operating in a backward geometry. On the one hand, the linear optical-response leads biphotons produced from two sidebands in the Mollow triplet to propagate with tunable refractive indices, while the central-component propagates with unity refractive index. The relative phase difference due to different refractive indices is analogous to the pathway-length difference between long-long and short-short in the original Franson interferometer. By subtracting the linear Rayleigh scattering of the pump, the visibility in the center part of the two-photon beating interference can be ideally manipulated among [0, 100%] by varying the pump power, the material length, and the atomic density, which indicates a Bell-type inequality violation. On the other hand, the proposed experiment may be an interesting way of probing the quantum nature of the detection process. The interference will disappear when the separation of the Mollow peaks approaches the fundamental timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008

    Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate

    Full text link
    We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their spatial components separately, we identified 2\pi topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors

    Quantum oscillations in YBa2Cu3O6+δ\mathrm{YBa_{2}Cu_{3}O_{6+\delta}} from an incommensurate dd-density wave order

    Full text link
    We consider quantum oscillation experiments in YBa2Cu3O6+δ\mathrm{YBa_{2}Cu_{3}O_{6+\delta}} from the perspective of an incommensurate Fermi surface reconstruction using an exact transfer matrix method and the Pichard-Landauer formula for the conductivity. The specific density wave order considered is a period-8 dd-density wave in which the current density is unidirectionally modulated. The current modulation is also naturally accompanied by a period-4 site charge modulation in the same direction, which is consistent with recent magnetic resonance measurements. In principle Landau theory also allows for a period-4 bond charge modulation, which is not discussed, but should be simple to incorporate in the future. This scenario leads to a natural, but not a unique, explanation of why only oscillations from a single electron pocket is observed, and a hole pocket of roughly twice the frequency as dictated by two-fold commensurate order, and the corresponding Luttinger sum rule, is not observed. However, it is possible that even higher magnetic fields will reveal a hole pocket of half the frequency of the electron pocket or smaller. This may be at the borderline of achievable high field measurements because at least a few complete oscillations have to be clearly resolved.Comment: 8 pages, 7 figure

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at Q0=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state

    A New Era in High-energy Physics

    Full text link
    In TeV-scale gravity, scattering of particles with center-of-mass energy of the order of a few TeV can lead to the creation of nonperturbative, extended, higher-dimensional gravitational objects: Branes. Neutral or charged, spinning or spinless, Einsteinian or supersymmetric, low-energy branes could dramatically change our picture of high-energy physics. Will we create branes in future particle colliders, observe them from ultra high energy cosmic rays, and discover them to be dark matter?Comment: 8 pages, 2 figures. Essay submitted on Mar 26, 2002 to the Gravity Research Foundation. Awarded the third prize in the 2002 GRF competitio

    Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation

    Full text link
    We report on the non-trivial nanoscale kinetics of the deposition of novel complex oxide heterostructures composed of a unit-cell thick correlated metal LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good crystallinity and surface morphology maintained over the large number of layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To elucidate the physics behind the growth, the temperature of the substrate and the deposition rate were varied over a wide range and the results were treated in the framework of a two-layer model. These results are of fundamental importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure

    Reading In English By Children In Korea: Frequency, Effectiveness, And Barriers

    Get PDF
    A study of the English non-textbook reading of fourth graders in Korea revealed that about 80% had done at least some reading, confirming that there is enthusiasm for English reading. About half, however, had read only five books or fewer. Non-readers said that the reason they did not read in English was the difficulty of English texts. Those who read more did better on a test of English spelling and vocabulary

    Machine Learning in Electronic Quantum Matter Imaging Experiments

    Full text link
    Essentials of the scientific discovery process have remained largely unchanged for centuries: systematic human observation of natural phenomena is used to form hypotheses that, when validated through experimentation, are generalized into established scientific theory. Today, however, we face major challenges because automated instrumentation and large-scale data acquisition are generating data sets of such volume and complexity as to defy human analysis. Radically different scientific approaches are needed, with machine learning (ML) showing great promise, not least for materials science research. Hence, given recent advances in ML analysis of synthetic data representing electronic quantum matter (EQM), the next challenge is for ML to engage equivalently with experimental data. For example, atomic-scale visualization of EQM yields arrays of complex electronic structure images, that frequently elude effective analyses. Here we report development and training of an array of artificial neural networks (ANN) designed to recognize different types of hypothesized order hidden in EQM image-arrays. These ANNs are used to analyze an experimentally-derived EQM image archive from carrier-doped cuprate Mott insulators. Throughout these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs find these phenomena to be unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals are congruent with all these observations.Comment: 44 pages, 15 figure
    corecore