68 research outputs found

    Cavité à haute finesse pour la production et la détection de sources atomiques cohérentes

    Get PDF
    This thesis reports the development of two original tools for atom interferometry.The first is a high finesse optical cavity for the manipulation of 87Rb cold atoms. This cavity isfirstly used to enhance the intensity of an optical dipole trap. Thus, by realizing an evaporativecooling on the atomic sample, we reached Bose-Einstein condensation. Furthermore, the nondegeneratecavity allows the injection of different transverse electromagnetic modes. In thisway, we have demonstrated the generation and the manipulation of arrays of atomic ensemblesusing these modes. Successive measurements of these atomic ensembles in an atominterferometric sequence would increase the interrogation time and thus the sensitivity of thesensor.Secondly, the use of weak nondestructive measurements on the atoms allows to extractinformation from the system with negligible perturbation of the ensemble. Applying feedbackafter the measurement, we were able to control the quantum state of the system. Using amodified Ramsey sequence with weak nondestructive measurements and phase corrections, werealized a phase lock loop between a local oscillator and the atomic state. We have thendemonstrated that this protocol leads to a stability enhancement of an atomic clock byovercoming the limit set by the local oscillator.We also contributed to the development of the commercial laser platform EYLSA fromQuantel, testing its performances on two laser cooling experiments.Cette thĂšse dĂ©crit le dĂ©veloppement de deux outils originaux pour l’interfĂ©romĂ©trie atomique. Le premier est une cavitĂ© optique Ă  haute finesse pour la manipulation d’atomes ultra-froids de 87Rb. Cette cavitĂ© est d’abord utilisĂ©e pour augmenter l’intensitĂ© d’un piĂšge dipolaire optique qui permet de piĂ©ger et refroidir les atomes. Ainsi, en procĂ©dant Ă  un refroidissement par Ă©vaporation de l’échantillon atomique, nous avons atteint le rĂ©gime de condensation de Bose-Einstein. La cavitĂ© Ă©tant non dĂ©gĂ©nĂ©rĂ©e, elle permet Ă©galement l’injection de diffĂ©rents modes transverses Ă©lectromagnĂ©tiques. Nous avons alors dĂ©montrĂ© la crĂ©ation et la manipulation de rĂ©seau d’ensembles atomiques en utilisant ces modes. La mesure successive de ces ensembles atomiques au cours d’une sĂ©quence d’interfĂ©romĂ©trie atomique permettrait d’augmenter le temps de mesure et ainsi d‘amĂ©liorer la sensibilitĂ© de l’instrument. DeuxiĂšmement, l’utilisation d’une mesure faible non destructive sur les atomes permet de soutirer de l’information du systĂšme sans le perturber. En appliquant une rĂ©troaction aprĂšs ces mesures, l’état quantique peut ĂȘtre contrĂŽlĂ©. Par l’utilisation d’une sĂ©quence de Ramsey adaptĂ©e avec des mesures faibles et des corrections de phase, nous avons ainsi dĂ©montrĂ© la rĂ©alisation d’une boucle Ă  verrouillage de phase entre un oscillateur local et l’état atomique. Nous avons ensuite dĂ©montrĂ© que ce protocole amĂ©liore la stabilitĂ© d’une horloge atomique en surpassant la limite de stabilitĂ© de l’oscillateur local. Nous avons Ă©galement validĂ© l’utilisation de la plate-forme laser commercial EYLSA de Quantel sur deux expĂ©riences de refroidissement d’atomes par laser

    STATIC AND DYNAMIC CHARACTERISTICS OF COMPOSITE ONE·PIECE HOCKEY STICKS

    Get PDF
    The purpose of this study was to evaluate the differE:nces in slatic and dynamic characteristics of one-piece composite hockey sticks of different brands and models. Earlier studies had only evaluated two-pieces sticks of different materials. Even if some static results present many similarities with those disclosed by earlier researchers, torsion tests have demonstrated one-piece composite sticks to be much more torsion resistant than two-pieces and wooden sticks. Furthermore, dynamic evaluations have disclosed very interesting puck-blade interactions, including multiple puck-blade impacts in actual slap shot situations

    High finesse cavity for the production and the detection of coherent atomic sources

    No full text
    Cette thĂšse dĂ©crit le dĂ©veloppement de deux outils originaux pour l’interfĂ©romĂ©trie atomique. Le premier est une cavitĂ© optique Ă  haute finesse pour la manipulation d’atomes ultra-froids de 87Rb. Cette cavitĂ© est d’abord utilisĂ©e pour augmenter l’intensitĂ© d’un piĂšge dipolaire optique qui permet de piĂ©ger et refroidir les atomes. Ainsi, en procĂ©dant Ă  un refroidissement par Ă©vaporation de l’échantillon atomique, nous avons atteint le rĂ©gime de condensation de Bose-Einstein. La cavitĂ© Ă©tant non dĂ©gĂ©nĂ©rĂ©e, elle permet Ă©galement l’injection de diffĂ©rents modes transverses Ă©lectromagnĂ©tiques. Nous avons alors dĂ©montrĂ© la crĂ©ation et la manipulation de rĂ©seau d’ensembles atomiques en utilisant ces modes. La mesure successive de ces ensembles atomiques au cours d’une sĂ©quence d’interfĂ©romĂ©trie atomique permettrait d’augmenter le temps de mesure et ainsi d‘amĂ©liorer la sensibilitĂ© de l’instrument. DeuxiĂšmement, l’utilisation d’une mesure faible non destructive sur les atomes permet de soutirer de l’information du systĂšme sans le perturber. En appliquant une rĂ©troaction aprĂšs ces mesures, l’état quantique peut ĂȘtre contrĂŽlĂ©. Par l’utilisation d’une sĂ©quence de Ramsey adaptĂ©e avec des mesures faibles et des corrections de phase, nous avons ainsi dĂ©montrĂ© la rĂ©alisation d’une boucle Ă  verrouillage de phase entre un oscillateur local et l’état atomique. Nous avons ensuite dĂ©montrĂ© que ce protocole amĂ©liore la stabilitĂ© d’une horloge atomique en surpassant la limite de stabilitĂ© de l’oscillateur local. Nous avons Ă©galement validĂ© l’utilisation de la plate-forme laser commercial EYLSA de Quantel sur deux expĂ©riences de refroidissement d’atomes par laser.This thesis reports the development of two original tools for atom interferometry.The first is a high finesse optical cavity for the manipulation of 87Rb cold atoms. This cavity isfirstly used to enhance the intensity of an optical dipole trap. Thus, by realizing an evaporativecooling on the atomic sample, we reached Bose-Einstein condensation. Furthermore, the nondegeneratecavity allows the injection of different transverse electromagnetic modes. In thisway, we have demonstrated the generation and the manipulation of arrays of atomic ensemblesusing these modes. Successive measurements of these atomic ensembles in an atominterferometric sequence would increase the interrogation time and thus the sensitivity of thesensor.Secondly, the use of weak nondestructive measurements on the atoms allows to extractinformation from the system with negligible perturbation of the ensemble. Applying feedbackafter the measurement, we were able to control the quantum state of the system. Using amodified Ramsey sequence with weak nondestructive measurements and phase corrections, werealized a phase lock loop between a local oscillator and the atomic state. We have thendemonstrated that this protocol leads to a stability enhancement of an atomic clock byovercoming the limit set by the local oscillator.We also contributed to the development of the commercial laser platform EYLSA fromQuantel, testing its performances on two laser cooling experiments

    High finesse cavity for the production and the detection of coherent atomic sources

    No full text
    Cette thĂšse dĂ©crit le dĂ©veloppement de deux outils originaux pour l’interfĂ©romĂ©trie atomique. Le premier est une cavitĂ© optique Ă  haute finesse pour la manipulation d’atomes ultra-froids de 87Rb. Cette cavitĂ© est d’abord utilisĂ©e pour augmenter l’intensitĂ© d’un piĂšge dipolaire optique qui permet de piĂ©ger et refroidir les atomes. Ainsi, en procĂ©dant Ă  un refroidissement par Ă©vaporation de l’échantillon atomique, nous avons atteint le rĂ©gime de condensation de Bose-Einstein. La cavitĂ© Ă©tant non dĂ©gĂ©nĂ©rĂ©e, elle permet Ă©galement l’injection de diffĂ©rents modes transverses Ă©lectromagnĂ©tiques. Nous avons alors dĂ©montrĂ© la crĂ©ation et la manipulation de rĂ©seau d’ensembles atomiques en utilisant ces modes. La mesure successive de ces ensembles atomiques au cours d’une sĂ©quence d’interfĂ©romĂ©trie atomique permettrait d’augmenter le temps de mesure et ainsi d‘amĂ©liorer la sensibilitĂ© de l’instrument. DeuxiĂšmement, l’utilisation d’une mesure faible non destructive sur les atomes permet de soutirer de l’information du systĂšme sans le perturber. En appliquant une rĂ©troaction aprĂšs ces mesures, l’état quantique peut ĂȘtre contrĂŽlĂ©. Par l’utilisation d’une sĂ©quence de Ramsey adaptĂ©e avec des mesures faibles et des corrections de phase, nous avons ainsi dĂ©montrĂ© la rĂ©alisation d’une boucle Ă  verrouillage de phase entre un oscillateur local et l’état atomique. Nous avons ensuite dĂ©montrĂ© que ce protocole amĂ©liore la stabilitĂ© d’une horloge atomique en surpassant la limite de stabilitĂ© de l’oscillateur local. Nous avons Ă©galement validĂ© l’utilisation de la plate-forme laser commercial EYLSA de Quantel sur deux expĂ©riences de refroidissement d’atomes par laser.This thesis reports the development of two original tools for atom interferometry.The first is a high finesse optical cavity for the manipulation of 87Rb cold atoms. This cavity isfirstly used to enhance the intensity of an optical dipole trap. Thus, by realizing an evaporativecooling on the atomic sample, we reached Bose-Einstein condensation. Furthermore, the nondegeneratecavity allows the injection of different transverse electromagnetic modes. In thisway, we have demonstrated the generation and the manipulation of arrays of atomic ensemblesusing these modes. Successive measurements of these atomic ensembles in an atominterferometric sequence would increase the interrogation time and thus the sensitivity of thesensor.Secondly, the use of weak nondestructive measurements on the atoms allows to extractinformation from the system with negligible perturbation of the ensemble. Applying feedbackafter the measurement, we were able to control the quantum state of the system. Using amodified Ramsey sequence with weak nondestructive measurements and phase corrections, werealized a phase lock loop between a local oscillator and the atomic state. We have thendemonstrated that this protocol leads to a stability enhancement of an atomic clock byovercoming the limit set by the local oscillator.We also contributed to the development of the commercial laser platform EYLSA fromQuantel, testing its performances on two laser cooling experiments

    High finesse cavity for the production and the detection of coherent atomic sources

    No full text
    Cette thĂšse dĂ©crit le dĂ©veloppement de deux outils originaux pour l’interfĂ©romĂ©trie atomique. Le premier est une cavitĂ© optique Ă  haute finesse pour la manipulation d’atomes ultra-froids de 87Rb. Cette cavitĂ© est d’abord utilisĂ©e pour augmenter l’intensitĂ© d’un piĂšge dipolaire optique qui permet de piĂ©ger et refroidir les atomes. Ainsi, en procĂ©dant Ă  un refroidissement par Ă©vaporation de l’échantillon atomique, nous avons atteint le rĂ©gime de condensation de Bose-Einstein. La cavitĂ© Ă©tant non dĂ©gĂ©nĂ©rĂ©e, elle permet Ă©galement l’injection de diffĂ©rents modes transverses Ă©lectromagnĂ©tiques. Nous avons alors dĂ©montrĂ© la crĂ©ation et la manipulation de rĂ©seau d’ensembles atomiques en utilisant ces modes. La mesure successive de ces ensembles atomiques au cours d’une sĂ©quence d’interfĂ©romĂ©trie atomique permettrait d’augmenter le temps de mesure et ainsi d‘amĂ©liorer la sensibilitĂ© de l’instrument. DeuxiĂšmement, l’utilisation d’une mesure faible non destructive sur les atomes permet de soutirer de l’information du systĂšme sans le perturber. En appliquant une rĂ©troaction aprĂšs ces mesures, l’état quantique peut ĂȘtre contrĂŽlĂ©. Par l’utilisation d’une sĂ©quence de Ramsey adaptĂ©e avec des mesures faibles et des corrections de phase, nous avons ainsi dĂ©montrĂ© la rĂ©alisation d’une boucle Ă  verrouillage de phase entre un oscillateur local et l’état atomique. Nous avons ensuite dĂ©montrĂ© que ce protocole amĂ©liore la stabilitĂ© d’une horloge atomique en surpassant la limite de stabilitĂ© de l’oscillateur local. Nous avons Ă©galement validĂ© l’utilisation de la plate-forme laser commercial EYLSA de Quantel sur deux expĂ©riences de refroidissement d’atomes par laser.This thesis reports the development of two original tools for atom interferometry.The first is a high finesse optical cavity for the manipulation of 87Rb cold atoms. This cavity isfirstly used to enhance the intensity of an optical dipole trap. Thus, by realizing an evaporativecooling on the atomic sample, we reached Bose-Einstein condensation. Furthermore, the nondegeneratecavity allows the injection of different transverse electromagnetic modes. In thisway, we have demonstrated the generation and the manipulation of arrays of atomic ensemblesusing these modes. Successive measurements of these atomic ensembles in an atominterferometric sequence would increase the interrogation time and thus the sensitivity of thesensor.Secondly, the use of weak nondestructive measurements on the atoms allows to extractinformation from the system with negligible perturbation of the ensemble. Applying feedbackafter the measurement, we were able to control the quantum state of the system. Using amodified Ramsey sequence with weak nondestructive measurements and phase corrections, werealized a phase lock loop between a local oscillator and the atomic state. We have thendemonstrated that this protocol leads to a stability enhancement of an atomic clock byovercoming the limit set by the local oscillator.We also contributed to the development of the commercial laser platform EYLSA fromQuantel, testing its performances on two laser cooling experiments

    Weak measurement based feedback control of atomic ensembles (Orale)

    No full text
    Atom interferometry based sensors provide today the most precise measurements of time, inertial forces and magnetic fields. In the common approach, a superposition state is interrogated for a given time interval and finally destructively measured. Conversely, we can repeatedly probe non-destructively the same quantum system and demonstrate efficient measurement schemes using feedback. First, we protect a spin polarized atomic ensemble from the decoherence induced by a synthetic noise. After the noise action, the state of the atomic system is read out with negligible projection using a non-destructive probe, and later corrected with a coherent manipulation to restore the initial state. The efficiency of the feedback scheme is studied versus the strength of the measurement and a maximum is found from the trade-off between information gain and probe destructivity. Our feedback controller is then applied to stabilize a classical local oscillator on a collective quantum state, and this is used in an atomic clock configuration to demonstrate experimentally that in some contexts a hybrid phase and frequency lock can surpass conventional atomic clocks which rely only on a frequency lock

    Weak measurement based feedback control of atomic ensembles (Orale)

    No full text
    International audienceAtom interferometry based sensors provide today the most precise measurements of time, inertial forces and magnetic fields. In the common approach, a superposition state is interrogated for a given time interval and finally destructively measured. Conversely, we can repeatedly probe non-destructively the same quantum system and demonstrate efficient measurement schemes using feedback. First, we protect a spin polarized atomic ensemble from the decoherence induced by a synthetic noise. After the noise action, the state of the atomic system is read out with negligible projection using a non-destructive probe, and later corrected with a coherent manipulation to restore the initial state. The efficiency of the feedback scheme is studied versus the strength of the measurement and a maximum is found from the trade-off between information gain and probe destructivity. Our feedback controller is then applied to stabilize a classical local oscillator on a collective quantum state, and this is used in an atomic clock configuration to demonstrate experimentally that in some contexts a hybrid phase and frequency lock can surpass conventional atomic clocks which rely only on a frequency lock
    • 

    corecore