40 research outputs found

    Desarrollo y aplicación de herramientas genómicas para la mejora de especies cucurbitáceas por calidad y resistencia a enfermedades

    Full text link
    El melón (Cucumis melo) y el calabacín (Cucurbita pepo) son especies cucurbitáceas de gran importancia económica a nivel nacional y mundial. Para optimizar su producción se requiere de la obtención de nuevas variedades mejor adaptadas a los sistemas de cultivo, más resistentes frente a nuevas enfermedades o plagas y con mejores características organolépticas, que respondan a las cada vez mayores exigencias del mercado. La mejora debe realizarse de una forma eficiente y competitiva, apoyándose en los crecientes conocimientos genéticos en estas dos especies y en los últimos avances biotecnológicos. El desarrollo de herramientas genómicas con el fin de impulsar la mejora de estos cultivos es el principal objetivo de la presente Tesis doctoral. El desarrollo de marcadores moleculares es esencial para la construcción de mapas genéticos, para la realización de una selección más eficiente, para el análisis y cartografía de QTLs (Quantitative trait loci) y para el desarrollo de líneas de premejora, además de ser una herramienta fundamental para el análisis de la biodiversidad. En esta Tesis se han desarrollo y/o validado marcadores de alta calidad, de tipo microsatélite (Simple Sequence Repeats, SSRs) y SNPs (Single Nucleotide Polymorphisms), para estas dos especies. La generación de información de secuencia, necesaria para el desarrollo de este tipo de marcadores, ha cambiado en el transcurso de los trabajos presentados en la Tesis, habiéndose abordado finalmente la secuenciación del transcriptoma de melón mediante técnicas de secuenciación de alto rendimiento (NGS, Next generation sequencing). La obtención de grandes colecciones de SSRs y SNPs en ambas especies, resultado del ensamblaje de ESTs (Expressed Sequence Tags) procedentes de secuencias Sanger previamente disponibles y de las nuevas secuencias obtenidas por secuenciación masiva, ha supuesto un gran avance para estas especies no modelo, permitiendo la construcción de mapas más densos en melón y del primer mapa baEsteras Gómez, C. (2012). Desarrollo y aplicación de herramientas genómicas para la mejora de especies cucurbitáceas por calidad y resistencia a enfermedades [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17046Palanci

    Nuevas Estrategias de Análisis de la Diversidad Genética Natural: Identificación de Variantes Alélicas en Genes de Interés Mediante Ecotilling

    Full text link
    Los recientes avances en Genética y Genómica están proporcionando una gran cantidad de información sobre la secuencia y la función de los genes, lo que supone la base para el desarrollo de nuevas estrategias de estudio de la diversidad. En este artículo se describe una nueva metodología de uso creciente, utilizada para la detección de polimorfismos genéticos en poblaciones naturales: EcoTILLING. Esta herramienta se ha empleado con éxito en diversas especies, no sólo para estudiar la variabilidad existente, sino con fines de mejora vegetal o animal. En este artículo se incluye una breve revisión teórica y una explicación práctica detallada. Con la explicación planteada se pretende facilitar el aprendizaje de esta nueva estrategia de análisis de la diversidad al alumno de Ciencias de la vida (Agronomía, Biología, Veterinaria, Medio ambiente, Biotecnología..), tanto a nivel teórico como práctico.Esteras Gómez, C.; Picó Sirvent, MB. (2011). Nuevas Estrategias de Análisis de la Diversidad Genética Natural: Identificación de Variantes Alélicas en Genes de Interés Mediante Ecotilling. http://hdl.handle.net/10251/1021

    TILLING: una herramienta para el estudio de la función de los genes y la generación de nueva variación

    Full text link
    Las nuevas técnicas de secuenciación de alto rendimiento están incrementando de manera muy rápida el número de secuencias disponibles en un amplio rango de organismos. En muchos casos, no se dispone de información acerca de la función de las secuencias génicas. Por ello, existe una necesidad creciente de asociar la variación nucleotídica en una secuencia a cambios fenotípicos, determinando así la función del gen. En este artículo docente se describe una metodología de uso creciente, empleada para el estudio de la función génica, además de para la generación de nueva variación: TILLING. Esta herramienta se ha empleado con éxito en diversas especies. A continuación se describen los fundamentos de la técnica y sus aplicaciones prácticas. La explicación planteada facilitará el aprendizaje de esta nueva estrategia de análisis de la función génica al alumno de Ciencias de la vida (Agronomía, Forestales, Medio ambiente, Biología, Biotecnología..), tanto a nivel teórico como práctico.Esteras Gómez, C.; Picó Sirvent, MB. (2011). TILLING: una herramienta para el estudio de la función de los genes y la generación de nueva variación. http://hdl.handle.net/10251/1034

    Marcadores moleculares basados en PCR: Marcadores SSR o STR (Simple Sequence Repeats o Short Tandem Repeats). Microsatélites

    Full text link
    Una vez que el alumno haya estudiado con detenimiento este documento y los recursos de apoyo asociados, será capaz de: 1. Definir y explicar cómo surge y en qué consiste el polimorfismo en las secuencias microsatélite. 2. Distinguir y aplicar las diferentes metodologías empleadas para la el uso de estas secuencias como marcadores genéticos. 3. Analizar e interpretar los resultados obtenidos.Picó Sirvent, MB.; Esteras Gómez, C. (2012). Marcadores moleculares basados en PCR: Marcadores SSR o STR (Simple Sequence Repeats o Short Tandem Repeats). Microsatélites. http://hdl.handle.net/10251/1674

    "Mini PS": A new mini melon breeding line exploiting the "Dudaim" variability

    Full text link
    [EN] 'Piel de Sapo' is one of the most consumed market class of melons in the Mediterranean area and it represents an important economic crop in Spain. The 'Mini PS' melon breeding line, which bears two main introgressions from the dudaim 'Queen's pocket' melon in the Piel de Sapo genetic background, was evaluated for its fruit quality traits in three environments. Some interesting commercial characteristics were detected, such as a notable decrease in the fruit weight and a rounder shape, compared with Piel de Sapo, while the other quality traits were not altered. Thus, this mini melon line, ideal as a personal melon, may be useful in the development of new melon cultivars.This work was supported by the Spanish Ministerio de Educacion through an ERA-NET Plant Genomics project (MELRIP: GEN2006-27773-C2-2-E), by the Spanish Ministerio de Economia de Empresa through a Plant KBBE project (SAFQIM: PIM2010PKB-00691). It was also partially supported by the projects AGL2014-53398-C2-2-R and AGL2017-85563-C2-1-R from Ministerio de Economia y Competitividad and Ministerio de Ciencia, Innovacion y Universidades (cofunded with FEDER funds).Castro, G.; Perpiña Martin, G.; Picó Sirvent, MB.; Esteras Gómez, C. (2020). "Mini PS": A new mini melon breeding line exploiting the "Dudaim" variability. Horticultural Science. 47(4):217-220. https://doi.org/10.17221/86/2019-HORTSCIS21722047

    Drought tolerance assessment of melon germplasm searching for adaptation to climate change

    Full text link
    [EN] Shortage of irrigation water at critical melon growth stages can be the most important limiting factor in the future due to climate change, especially in the Mediterranean region. Apart from the improvement of irrigation systems and crop management, the development of drought tolerant cultivars by genetic breeding is the best solution to achieve stable yields. Screening germplasm collections is a prerequisite for that. A melon core collection was evaluated in the current work in two assays. Seven morphological traits were assessed at plantlet stage and compared under drought and standard conditions imposed. Significant differences for all traits were recorded among the sixty accessions evaluated. Clustering analysis also grouped the accessions according to their response to drought, detecting some landraces and wild types of interest, mainly of Indian and African origin, although the best behavior under drought was found in a flexuosus melon from Irak. Some Spanish inodorus landraces also showed better response than the average behavior of commercial types. The employment of this set of traits has allowed screening a large germplasm collection in an easy and non-expensive way, in one of the most sensitive developmental stages.The authors thank the Erasmus mundus team, WELCOME project, Third Cohort, for offering funds for the research and scholarship activities. Also, they thank the Conselleria d'Educació, Investigació, Cultura i Esport (Generalitat Valenciana) for funding the project Prometeo (2017/078).Elsayed, H.; Peiró Barber, RM.; Picó Sirvent, MB.; Esteras Gómez, C. (2019). Drought tolerance assessment of melon germplasm searching for adaptation to climate change. African Journal of Agricultural Research. 14(27):1180-1196. https://doi.org/10.5897/AJAR2018.13807S11801196142

    High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    Get PDF
    Background: Cucurbita pepo is amember of the Cucurbitaceae family, the second-most important horticultural family in terms of economic importance after Solanaceae. The ¿summer squash¿ types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results: We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species¿ two subspecies: Zucchini (subsp. pepo) ¿ Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion: Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps an performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better adapted squash varieties.This research was funded by the INIA projects RTA2008-00035-C02-01/02 and RTA2011-00044-C02-1/2 of the Spanish Instituto Nacional de Investigacion y Tecnologia Agraria and FEDER funds (EU). The NVD grant was supported by the Programa de Formacion del Personal Tecnico e Investigador from IFAPA, co-financed with European Social Funds. The authors wish to thank P. Salas and E. Martinez Perez for their technical assistance in the fruit characterization. We are thankful for the kindly suggestions of Dr. Harry Paris for the F2 C. pepo mapping population.Esteras Gómez, C.; Gómez, P.; Monforte Gilabert, AJ.; Blanca Postigo, JM.; Vicente-Dolera, N.; Roig Montaner, MC.; Nuez Viñals, F.... (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics. 13(80):1-21. https://doi.org/10.1186/1471-2164-13-80S121138

    New Charentais Lines with Delayed Climacteric Ripening Derived from an Introgression Lines Collection

    Full text link
    This work has been carried out in the framework of the Programa de Valorización y Recursos Conjuntos de I+D+i de VLC/CAMPUS and has been funded by the Ministerio de Educación, Cultura y Deporte as part of the Programa Campus de Excelencia Internacional. IL generation, genotyping and phenotyping was supported by SAFQIM project, AGL2012-40130-C02-02 of the Spanish Ministry of Economy and Competitivity (MINECO). The authors also wish to thank the MINECO project AGL2014-53398- C2-2-R, co-funded with FEDER funds.Perpiñá Martín, G.; Castro, G.; Esteras Gómez, C.; Picó Sirvent, MB.; Monforte Gilabert, AJ. (2017). New Charentais Lines with Delayed Climacteric Ripening Derived from an Introgression Lines Collection. Cucurbit Genetics Cooperative. (39-40):5-7. http://hdl.handle.net/10251/104234S5739-4

    Melon Genetic Resources Characterization for Rind Volatile Profile

    Get PDF
    [EN] A melon core collection was analyzed for rind volatile compounds as, despite the fact that they are scarcely studied, these compounds play an important role in consumer preferences. Gas chromatography coupled to mass spectrometry allowed the detection of 171 volatiles. The high volatile diversity found was analyzed by Hierarchical Cluster Analysis (HCA), giving rise to two major clusters of accessions. The first cluster included climacteric and aromatic types such as Cantalupensis, Ameri, Dudaim and Momordica, rich in esters; the second one mainly included non-climacteric non-aromatic types such as Inodorus, Flexuosus, Acidulus, Conomon and wild Agrestis, with low volatiles content, specifically affecting esters. Many interesting accessions were identified, with different combinations of aroma profiles for rind and flesh, such as Spanish Inodorus landraces with low aroma flesh but rind levels of esters similar to those in climacteric Cantalupensis, exotic accessions sharing high contents of specific compounds responsible for the unique aroma of Dudaim melons or wild Agrestis with unexpected high content of some esters. Sesquiterpenes were present in rinds of some Asian Ameri and Momordica landraces, and discriminate groups of cultivars (sesquiterpene-rich/-poor) within each of the two most commercial melon horticultural groups (Cantalupensis and Inodorus), suggesting that the Asian germplasm is in the origin of specific current varieties or that this feature has been introgressed more recently from Asian sources. This rind characterization will encourage future efforts for breeding melon quality as many of the characterized landraces and wild accessions have been underexploited.This work was supported by ERA-PG project (MELRIP: GEN2006-27773-C2-2-E), Plant KBBE project (SAFQIM: PIM2010PKB-00691), Ministerio de Economia y Competitividad AGL2014-53398-C2-2-R (jointly funded by FEDER), Ministerio de Ciencia, Innovacion y Universidades, cofunded with FEDER funds (Project No. AGL2017-85563-C2-1-R), by PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura i Esports (Generalitat Valenciana) and partly by GV/2020/025 by the Conselleria de Innovacion, Universidades, Ciencia y Sociedad digital. J.L. Rambla is supported by the Spanish Ministry of Economy and Competitiveness through a "Juan de la Cierva-Formacion" grant (FJCI-2016-28601).Esteras Gómez, C.; Rambla Nebot, JL.; Sánchez, G.; Granell Richart, A.; Picó Sirvent, MB. (2020). Melon Genetic Resources Characterization for Rind Volatile Profile. Agronomy. 10:1-18. https://doi.org/10.3390/agronomy10101512S11810Burger, Y., Sa’ar, U., Paris, H., Lewinsohn, E., Katzir, N., Tadmor, Y., & Schaffer, A. (2006). Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal of Plant Sciences, 54(3), 233-242. doi:10.1560/ijps_54_3_233Moing, A., Allwood, J. W., Aharoni, A., Baker, J., Beale, M. H., Ben-Dor, S., … Schaffer, A. A. (2020). Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites, 10(3), 121. doi:10.3390/metabo10030121Nee, M., & Kirkbride, J. H. (1994). Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae)-Botanical Identification of Cucumbers and Melons. Bulletin of the Torrey Botanical Club, 121(3), 300. doi:10.2307/2997187Bernillon, S., Biais, B., Deborde, C., Maucourt, M., Cabasson, C., Gibon, Y., … Moing, A. (2012). Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 9(1), 57-77. doi:10.1007/s11306-012-0429-1Aubert, C., & Bourger, N. (2004). Investigation of Volatiles in Charentais Cantaloupe Melons (Cucumis melo Var. cantalupensis). Characterization of Aroma Constituents in Some Cultivars. Journal of Agricultural and Food Chemistry, 52(14), 4522-4528. doi:10.1021/jf049777sObando-Ulloa, J. M., Ruiz, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2010). Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chemistry, 118(3), 815-822. doi:10.1016/j.foodchem.2009.05.068Verzera, A., Dima, G., Tripodi, G., Ziino, M., Lanza, C. M., & Mazzaglia, A. (2010). Fast Quantitative Determination of Aroma Volatile Constituents in Melon Fruits by Headspace–Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Food Analytical Methods, 4(2), 141-149. doi:10.1007/s12161-010-9159-zCondurso, C., Verzera, A., Dima, G., Tripodi, G., Crinò, P., Paratore, A., & Romano, D. (2012). Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Scientia Horticulturae, 148, 9-16. doi:10.1016/j.scienta.2012.09.015Escribano, S., & Lázaro, A. (2012). Sensorial characteristics of Spanish traditional melon genotypes: has the flavor of melon changed in the last century? European Food Research and Technology, 234(4), 581-592. doi:10.1007/s00217-012-1661-7Pang, X., Chen, D., Hu, X., Zhang, Y., & Wu, J. (2012). Verification of Aroma Profiles of Jiashi Muskmelon Juice Characterized by Odor Activity Value and Gas Chromatography–Olfactometry/Detection Frequency Analysis: Aroma Reconstitution Experiments and Omission Tests. Journal of Agricultural and Food Chemistry, 60(42), 10426-10432. doi:10.1021/jf302373gVallone, S., Sivertsen, H., Anthon, G. E., Barrett, D. M., Mitcham, E. J., Ebeler, S. E., & Zakharov, F. (2013). An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chemistry, 139(1-4), 171-183. doi:10.1016/j.foodchem.2012.12.042BAI, X., TENG, L., LÜ, D., & QI, H. (2014). Co-Treatment of EFF and 1-MCP for Enhancing the Shelf-Life and Aroma Volatile Compounds of Oriental Sweet Melons (Cucumis melo var. makuwa Makino). Journal of Integrative Agriculture, 13(1), 217-227. doi:10.1016/s2095-3119(13)60372-xChen, H., Cao, S., Jin, Y., Tang, Y., & Qi, H. (2016). The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo). Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00254Gonda, I., Lev, S., Bar, E., Sikron, N., Portnoy, V., Davidovich-Rikanati, R., … Lewinsohn, E. (2013). Catabolism ofl-methionine in the formation of sulfur and other volatiles in melon (Cucumis meloL.) fruit. The Plant Journal, 74(3), 458-472. doi:10.1111/tpj.12149Freilich, S., Lev, S., Gonda, I., Reuveni, E., Portnoy, V., Oren, E., … Katzir, N. (2015). Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0449-xGonda, I., Davidovich-Rikanati, R., Bar, E., Lev, S., Jhirad, P., Meshulam, Y., … Lewinsohn, E. (2018). Differential metabolism of L–phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. Phytochemistry, 148, 122-131. doi:10.1016/j.phytochem.2017.12.018Galpaz, N., Gonda, I., Shem‐Tov, D., Barad, O., Tzuri, G., Lev, S., … Katzir, N. (2018). Deciphering genetic factors that determine melon fruit‐quality traits using RNA ‐Seq‐based high‐resolution QTL and eQTL mapping. The Plant Journal, 94(1), 169-191. doi:10.1111/tpj.13838Feder, A., Jiao, C., Galpaz, N., Vrebalov, J., Xu, Y., Portnoy, V., … Giovannoni, J. J. (2020). Melon ethylene-mediated transcriptome and methylome dynamics provide insights to volatile production. doi:10.1101/2020.01.28.923284El-Sharkawy, I., Manríquez, D., Flores, F. B., Regad, F., Bouzayen, M., Latché, A., & Pech, J.-C. (2005). Functional Characterization of a Melon Alcohol Acyl-transferase Gene Family Involved in the Biosynthesis of Ester Volatiles. Identification of the Crucial Role of a Threonine Residue for Enzyme Activity*. Plant Molecular Biology, 59(2), 345-362. doi:10.1007/s11103-005-8884-yPerry, P. L., Wang, Y., & Lin, J. (2009). Analysis of honeydew melon (Cucumis melovar.inodorus) flavour and GC-MS/MS identification of (E,Z)-2,6-nonadienyl acetate. Flavour and Fragrance Journal, 24(6), 341-347. doi:10.1002/ffj.1947Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2013). Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Research International, 54(2), 1519-1527. doi:10.1016/j.foodres.2013.09.011Allwood, J. W., Cheung, W., Xu, Y., Mumm, R., De Vos, R. C. H., Deborde, C., … Goodacre, R. (2014). Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 99, 61-72. doi:10.1016/j.phytochem.2013.12.010Portnoy, V., Benyamini, Y., Bar, E., Harel-Beja, R., Gepstein, S., Giovannoni, J. J., … Katzir, N. (2008). The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Molecular Biology, 66(6), 647-661. doi:10.1007/s11103-008-9296-6Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2Sánchez, G., Martínez, J., Romeu, J., García, J., Monforte, A. J., Badenes, M. L., & Granell, A. (2014). The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology, 14(1), 137. doi:10.1186/1471-2229-14-137Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content      . Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455Verzera, A., Dima, G., Tripodi, G., Condurso, C., Crinò, P., Romano, D., … Paratore, A. (2014). Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Scientia Horticulturae, 169, 118-124. doi:10.1016/j.scienta.2014.02.008López, C., Ferriol, M., & Picó, M. B. (2015). Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica, 204(3), 679-691. doi:10.1007/s10681-015-1371-xSharon-Asa, L., Shalit, M., Frydman, A., Bar, E., Holland, D., Or, E., … Eyal, Y. (2003). Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1 , a key gene in the production of the sesquiterpene aroma compound valencene. The Plant Journal, 36(5), 664-674. doi:10.1046/j.1365-313x.2003.01910.xPechous, S. W., & Whitaker, B. D. (2004). Cloning and functional expression of an ( E , E )-a-farnesene synthase cDNA from peel tissue of apple fruit. Planta, 219(1), 84-94. doi:10.1007/s00425-003-1191-4MARUYAMA, T., ITO, M., & HONDA, G. (2001). Molecular Cloning, Functional Expression and Characterization of (E)-.BETA.-Farnesene Synthase from Citrus junos. Biological and Pharmaceutical Bulletin, 24(10), 1171-1175. doi:10.1248/bpb.24.1171Lourenço, A. M., Haddi, K., Ribeiro, B. M., Corrêia, R. F. T., Tomé, H. V. V., Santos-Amaya, O., … Aguiar, R. W. S. (2018). Essential oil of Siparuna guianensis as an alternative tool for improved lepidopteran control and resistance management practices. Scientific Reports, 8(1). doi:10.1038/s41598-018-25721-0Monforte, A. J., Garcia-Mas, J., & Arus, P. (2003). Genetic variability in melon based on microsatellite variation. Plant Breeding, 122(2), 153-157. doi:10.1046/j.1439-0523.2003.00848.xBlanca, J., Esteras, C., Ziarsolo, P., Pérez, D., Fernández-Pedrosa, V., Collado, C., … Picó, B. (2012). Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics, 13(1). doi:10.1186/1471-2164-13-280Zhao, G., Lian, Q., Zhang, Z., Fu, Q., He, Y., Ma, S., … Huang, S. (2019). A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51(11), 1607-1615. doi:10.1038/s41588-019-0522-8Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0Atkinson, R. G. (2016). Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. Journal of Agricultural and Food Chemistry, 66(10), 2259-2272. doi:10.1021/acs.jafc.6b04696Castro, G., Perpiñá, G., Monforte, A. J., Picó, B., & Esteras, C. (2019). New melon introgression lines in a Piel de Sapo genetic background with desirable agronomical traits from dudaim melons. Euphytica, 215(10). doi:10.1007/s10681-019-2479-

    Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11

    Full text link
    [EN] Key message Identification of three genomic regions and underlying candidate genes controlling the high level of resistance to ToLCNDV derived from a wild melon. SNP markers appropriated for MAS management of resistance. Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus that severely affects melon crop (Cucumis melo) in the main production areas of Spain since 2012. In this work, we evaluated the degree of resistance of four accessions (two belonging to the subsp. agrestis var. momordica and two to the wild agrestis group) and their corresponding hybrids with a susceptible commercial melon belonging to the subsp. melo (Piel de Sapo, PS). The analysis using quantitative PCR (qPCR) allowed us to select one wild agrestis genotype (WM-7) with a high level of resistance and use it to construct segregating populations (F (2) and backcrosses). These populations were phenotyped for symptom severity and virus content using qPCR, and genotyped with different sets of SNP markers. Phenotyping and genotyping results in the F (2) and BC1s populations derived from the WM-7 x PS cross were used for QTL analysis. Three genomic regions controlling resistance to ToLCNDV were found, one major locus in chromosome 11 and two additional regions in chromosomes 12 and 2. The highest level of resistance (no or mild symptoms and very low viral titer) was obtained with the homozygous WM-7WM-7 genotype at the major QTL in chromosome 11, even with PSPS genotypes at the other two loci. The resistance derived from WM-7 is useful to develop new melon cultivars and the linked SNPs selected in this paper will be highly useful in marker-assisted breeding for ToLCNDV resistance in melon.CS was the recipient of a predoctoral fellowship (ACIF/2016/188) from Generalitat Valenciana, and CM was the recipient of a Juan de la Cierva contract from the Spanish Ministerio de Economia y Competitividad (FJCI-2014-19817). This work was supported by Project E_ RTA2013-00020-C04-03 from the Spanish Instituto Nacional de Investigaciones Agrarias (INIA) cofunded with FEDER funds. We also thank Maureen Mecozzi for helpful edits and the USDA genebank for providing seeds of some of the accessions used in this study.Sáez-Sánchez, C.; Esteras Gómez, C.; Martínez-Martínez, C.; Ferriol Molina, M.; Dhillon, N.; López Del Rincón, C.; Picó Sirvent, MB. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports. 36(10):1571-1584. https://doi.org/10.1007/s00299-017-2175-3S157115843610Bandaranayake WMEK, Wickramarachchi WART, Wickramasinghe HAM, Rajapakshe RGAS, Dissanayake DMKK (2014) Molecular detection and characterization of begomoviruses associated with cucurbitaceae vegetables in Sri Lanka. J Natl Sci Found Sri Lanka 42:265–271. doi: 10.4038/jnsfsr.v42i3.7400Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, García-Mas J, Picó B (2011) Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome 4:118–131. doi: 10.1186/1471-2164-12-104Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández V, Collado C, Rodríguez R, Ballester A, Roig C, Cañizares J, Picó B (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genom 13:280. doi: 10.1186/1471-2164-13-280Brustolini OJB, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VAP, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EPB (2015) Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnol J 13:1300–1311. doi: 10.1111/pbi12349Chang HH, Ku HM, Tsai WS, Chien RC, Jan FJ (2010) Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. Eur J Plant Pathol 127:219–228. doi: 10.1007/s10658-010-9586-0Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ, Lu CA (2014) Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. Plant Mol Biol 85:443–458. doi: 10.1007/s11103-014-0196-7Chung HY, Sunter G (2014) Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Mol Biol 86:185–200. doi: 10.1007/s11103-014-0222-9Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK, Reitsma KR, Garcia-Mas J, Sharma A, McCreight JD (2012) Melon landraces of India: contributions and importance. In: Janick J (ed) Plant breeding reviews, vol 35. Wiley, New Jersey, pp 85–150. doi: 10.1002/9781118100509Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15EPPO (2017) European and Mediterranean Plant Protection Organization. https://www.eppo.int/QUARANTINE/Alert_List/viruses/ToLCNDV.htm . Accessed 28 Feb 2017Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom 22(13):80. doi: 10.1186/1471-2164-13-80Esteras C, Formisano G, Roig C, Díaz A, Blanca J, García-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:285–303. doi: 10.1007/s00122-013-2053-5Font San Ambrosio MI, Alfaro Fernández AO (2015) El virus de Nueva Delhi (Tomato leaf curl New Delhi virus, ToLCNDV) amplía su gama de hospedantes en los cultivos españoles. Phytoma 272:25–30Fortes IM, Sánchez-Campos S, Fiallo-Olivé E, Díaz-Pendón JA, Navas-Castillo J, Moriones E (2016) A novel strain of Tomato leaf curl New Delhi virus has spread to the Mediterranean basin. Viruses 8:307. doi: 10.3390/v8110307García-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM et al (2012) The genome of melon (Cucumis melo L). Proc Natl Acad Sci 109:11872–11877. doi: 10.1073/pnas.1205415109Hernández V (2016) El melón deja espacio a la sandía en Castilla La Mancha. MERCADOS. http://www.revistamercadoscom/noticia/melon-deja-espacio-la-sandia-castilla-la-mancha/ . Accessed 24 Feb 2017Hunter LJR, Brockington SF, Murphy AM, Pate AE, MacFarlane SA, Palukaitis P, Carr JP (2016) RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases. Sci Rep 6:23082. doi: 10.1038/srep23082Islam S, Munshi AD, Mandal B, Behera TK, Kumar R (2010) Genetics of resistance in Luffa cylindrical Roemagainst tomato leaf curl New Delhi virus. Euphytica 174:83–89. doi: 10.1007/s10681-010-0138-7Islam S, Munshi AD, Verma M, Arya L, Mandal B, Behera TK, Kumar R, Lal SK (2011) Screening of Luffa cylindrical Roem for resistance against Tomato leaf curl New Delhi virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. J Hortic Sci Biotechnol 86:661–667Ji Y, Schuster DJ, Scott JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284. doi: 10.1007/s11032-007-9089-7Juárez M, Tovar R, Fiallo-Olivé E, Aranda MA, Gosálvez B, Castillo P, Moriones E, Navas-Castillo J (2014) First detection of tomato leaf curl New Delhi virus infecting Zucchini in Spain. Plant Dis 98:857–858. doi: 10.1094/pdis-10-13-1050-PDNJyothsna P, Haq QMI, Singh P, Sumiya KV, Praveen S, Rawat R, Briddon RW, Malathi VG (2013) Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol 97:5457–5471. doi: 10.1007/s00253-012-4685-9Khan MS, Ji SH, Chun SC (2012) Begomoviruses and their emerging threats in South Korea: a review. Plant Pathol 28:123–136. doi: 10.5423/PPJ.2012.28.2.123Kushwaha N, Singh AK, Basu S, Chakraborty S (2015) Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch Virol 160:1499–1509. doi: 10.1007/s00705-015-2399-xLacatus G, Sunter G (2009) The Arabidopsis PEAPOD2 transcription factor interacts with geminivirus AL2 protein and the coat protein promoter. Virology 392:196–202. doi: 10.1016/j.virol.2009.07.004Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, Makhbash Z, Nahon S, Shlomo H, Chen L, Reuveni M, Levin I (2015) A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genet 11:e1005538. doi: 10.1371/journalLee KJ, Kim K (2015) The rice serine/threonine protein kinase OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) is potentially involved in resistance to rice stripe disease. Plant Growth Regul 77(1):67–75. doi: 10.1007/s10725-015-0036-zLeida C, Moser C, Esteras C, Sulpice R, Lunn JE, De Langen F et al (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L). BMC Genet 16:28. doi: 10.1186/s12863-015-0183-2López C, Ferriol M, Picó MB (2015) Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica 204:279–691. doi: 10.1007/s10681-015-1371-xMascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-Garcia S, Blanca J, Gonzalez-Ibeas D, Saladie M, Roig C, Picó B, Lopez-Vigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomenech P, Caño-Delgado AI (2009) An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genom 10:467. doi: 10.1186/1471-2164-10-467McCreight JD, Wiutemantel WM, Natwick ET, Sinclair JW, Crosby KM, Gómez-Guillamón ML (2017) Recessive resistance to CYSDV in melon TGR 1551. Acta Hortic 1151:101–108. doi: 10.17660/ActaHortic.2017.1151.17Mnari-Hattab M, Zammouri S, Belkadhi MS, Bellon Doña D, ben Nahia MR, Hajlaoui E (2015) First report of Tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Dis Rep 31:21. doi: 10.5197/j2044-05882015031021Mubin M, Mansoor S, Hussain M, Zafar Y (2007) Silencing of AV2 gene by antisense RNA protects transgenic plants against a bipartite begomovirus. Virol J 4:10. doi: 10.1186/1743-422X-4-10Naqvi AR, Haq QMR, Mukherjee SK (2010) MicroRNA profiling of Tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281. doi: 10.1186/1743-422X-7-281Palomares-Rius FJ, Garcés-Claver A, Gómez-Guillamón ML (2016) Detection of two QTLs associated with resistance to cucurbit yellow stunting disorder virus in Melon Line TGR 1551. In: Kozik EU, Paris HS (eds) XIth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, pp 334–337Panno S, Iacono G, Davino M, Marchione S, Zappardo V, Bella P, Tomassoli L, Accotto GP, Davino S (2016) First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Dis Rep 33:6. doi: 10.5197/j2044-05882016033006Papidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35. doi: 10.1099/0022-1317-76-1-25Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154. doi: 10.1186/s12870-016-0842-0Pradhan B, Naqvi AR, Saraf S, Mukherjee SK, Dey N (2015) Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanum lycopersicum. Virus Res 195:183–195. doi: 10.1016/j.virusres.2014.09.001Pratap D, Kashikar AR, Mukherjee SK (2011) Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol J 8:305. doi: 10.1186/1743-422X-8-305Rai NK, Sahu PP, Gupta S, Reddy MK, Ravishankar KV, Singh M, Sadashiva AT, Prasad M (2013) Identification and validation of an ISSR marker linked to Tomato leaf curl New Delhi virus resistant gene in a core set of tomato accessions. Veg Sci 40:1–6Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Farich BA, Santana-Magal N, Elimelech M, Kontsedalov S, Lebedev G, Cilia M, Ghanim M (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8. doi: 10.1016/j.coviro.2015.06.008Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Evol 59:755–767. doi: 10.1007/s10722-011-9716-3Ruiz L, Simon A, Velasco L, Janssen D (2016) Biological characterization of Tomato leaf curl New Delhi virus from Spain. Plant Pathol. doi: 10.1111/ppa12587Sáez C, Martínez C, Ferriol M, Manzano S, Velasco L, Jamilena M, López C, Picó B (2016) Resistance to Tomato leaf curl New Delhi virus in Cucurbita spp. Ann Appl Biol 169:91–105. doi: 10.1111/aab12283Saha D, Rana RS, Sureja AK, Verma M, Arya L, Munshi AD (2013) Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato Leaf Curl New Delhi Virus resistant genotype of Luffa cylindrica Roem. Physiol Mol Plant Pathol 81:107–117. doi: 10.1016/j.pmpp.2012.11.007Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544. doi: 10.1111/j.1364-3703.2010.00630.xSahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M (2016) Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 6:27078. doi: 10.1038/srep27078Sarowar S, Oh HW, Cho HS, Baek KH, Seong ES et al (2007) Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J 51:792–802. doi: 10.1111/j.1365-313X.2007.03174.xSharma V, Basu S, Chakraborty S (2015) RNAi mediated broad-spectrumtransgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses. Plant Cell Rep 34:1389–1399. doi: 10.1007/s00299-015-1795-8Srivastava KM, Hallan V, Raizada RK, Chandra G, Singh BP, Sane PV (1995) Molecular cloning of Indian tomato leaf curl virus genome following a simple method of concentrating the supercoiled replicative form of viral DNA. J Virol Methods 51:297–304Van Ooijen JW (2009) MapQTL® 6 Software for the mapping of quantitative trait loci in experimental population of diploid species Kayzma BV. Wageningen, The NetherlandsVan Ooijen JW, Voorrips RE (2001) JoinMap Version 30, Software for the calculation of genetic linkage maps Release 30 Plant Research International Wageningen, The NetherlandsVerlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases. PLOS Genetics 9:e1003399. doi: 10.1371/journal.pgen.1003399Vu TV, Roy Choudhury N, Mukherjee SK (2013) Transgenic tomato plantsexpressing artificial microRNAs for silencing the pre-coat and coat proteins of abegomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45. doi: 10.1016/j.virusres.2012.12.008Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL cartographer 25 department of statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm . Accessed 20 Feb 2017Yeam I (2016) Current advances and prospectus of viral resistance in horticultural crops. Hortic Environ Biotechnol 57:113–122. doi: 10.1007/s13580-016-0105-xZaidi SSEA, Martin DP, Amin I, Farooq M, Mansoor S (2016) Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Mol Plant Pathol. doi: 10.1111/mpp12481Zamir D, Ekstein-Michelson I, Zakay Y et al (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146. doi: 10.1007/BF00225889Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468Zorzatto C, Machado JP, Lopes KV, Nascimento KJ, Pereira WA, Brustolini OJ, Reis PA, Calil IP, Deguchi M, Sachetto-Martins G, Gouveia BC, Loriato VA, Silva MA, Silva FF, Santos AA, Chory J, Fontes EP (2015) NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520:679–682. doi: 10.1038/nature1417
    corecore