4 research outputs found

    From Chirps to Random-FM Excitations in Pulse Compression Ultrasound Systems

    Full text link
    Pulse compression is often practiced in ultrasound Non Destructive Testing (NDT) systems using chirps. However, chirps are inadequate for setups where multiple probes need to operate concurrently in Multiple Input Multiple Output (MIMO) arrangements. Conversely, many coded excitation systems designed for MIMO miss some chirp advantages (constant envelope excitation, easiness of bandwidth control, etc.) and may not be easily implemented on hardware originally conceived for chirp excitations. Here, we propose a system based on random-FM excitations, capable of enabling MIMO with minimal changes with respect to a chirp-based setup. Following recent results, we show that random-FM excitations retain many advantages of chirps and provide the ability to frequency-shape the excitations matching the transducers features.Comment: 4 pages, 4 figures. Post-print from conference proceedings. Note that paper in conference proceedings at http://dx.doi.org/10.1109/ULTSYM.2012.0117 has some rendering issue

    Transformation of stainless steel slag toward a reactive cementitious binder

    No full text
    Argon oxygen decarburization (AOD) slag represents more than 50 wt% of the slag from stainless steel production. Although some applications are available,e.g., as aggregates for road constructions or fertilizers, they are characterized by low economic value and limited applicability. In order to increase the economic value of AOD slag, alternative applications have been proposed, e.g., as partial or full replacement for Ordinary Portland Cement (OPC). The work presented here investigates whether the adaptation of the AOD slag chemistry within a high temperature process leads to an improvement of its hydraulic properties and thereby can demonstrate its potential to be converted into a hydraulic binder suit able for OPC replacement. For this purpose, three synthetic AOD slags with basicities(CaO/SiO2) of 2.0, 2.2, and 2.4 were synthesized, and the effect of the CaO/SiO2 ratio on the material stability, the amount of tri-calcium silicate formed, and their hydraulic properties investigated. X-ray diffraction, scanning electron microscope(SEM), and isothermal calorimetry analysis were used to characterize the microstructure and the hydraulic activity. The results show that the proposed method is indeed a promising way to stabilize a stainless steel AOD slag and con-vert it into a hydraulic binder.status: publishe

    Exploiting Non-Linear Chirp and sparse deconvolution to enhance the performance of pulse-compression ultrasonic NDT

    No full text
    A pulse-compression procedure based on Non-Linear Chirp for Ultrasonic Non Destructive Testing is presented. Non-Linear Chirp signals can be tailored to reproduce any desired continuous spectrum. Here, such capability is exploited to take into account the features of the specific hardware set-up in use, and particularly to adapt the excitation signal to the probes. An application of the proposed procedure to Air-Coupled Ultrasound Imaging is also presented. In order to enhance the imaging resolution, L1-norm Total Variation deconvolution is exploited and compared with standard L2-norm Wiener deconvolution. Although the usage of Air-Coupled probes entails a high attenuation of the ultrasonic signals due to transmission in air and reflections at the airsample interface, the experimental results show that the combination of Pulse Compression technique and of advanced signal processing guarantees the effectiveness of the inspection

    Exploiting Non-Linear Chirp and Sparse Deconvolution to Enhance the Performance of Pulse-Compression Ultrasonic NDT

    No full text
    A pulse-compression procedure based on Non-Linear Chirp for Ultrasonic Non Destructive Testing is presented. Non-Linear Chirp signals can be tailored to reproduce any desired continuous spectrum. Here, such capability is exploited to take into account the features of the specific hardware set-up in use, and particularly to adapt the excitation signal to the probes. An application of the proposed procedure to Air-Coupled Ultrasound Imaging is also presented. In order to enhance the imaging resolution, L1 -norm Total Variation deconvolution is exploited and compared with standard L2-norm Wiener deconvolution. Although the usage of Air-Coupled probes entails a high attenuation of the ultrasonic signals due to transmission in air and reflections at the air-sample interface, the experimental results show that the combination of Pulse Compression technique and of advanced signal processing guarantees the effectiveness of the inspection
    corecore