Transformation of stainless steel slag toward a reactive cementitious binder

Abstract

Argon oxygen decarburization (AOD) slag represents more than 50 wt% of the slag from stainless steel production. Although some applications are available,e.g., as aggregates for road constructions or fertilizers, they are characterized by low economic value and limited applicability. In order to increase the economic value of AOD slag, alternative applications have been proposed, e.g., as partial or full replacement for Ordinary Portland Cement (OPC). The work presented here investigates whether the adaptation of the AOD slag chemistry within a high temperature process leads to an improvement of its hydraulic properties and thereby can demonstrate its potential to be converted into a hydraulic binder suit able for OPC replacement. For this purpose, three synthetic AOD slags with basicities(CaO/SiO2) of 2.0, 2.2, and 2.4 were synthesized, and the effect of the CaO/SiO2 ratio on the material stability, the amount of tri-calcium silicate formed, and their hydraulic properties investigated. X-ray diffraction, scanning electron microscope(SEM), and isothermal calorimetry analysis were used to characterize the microstructure and the hydraulic activity. The results show that the proposed method is indeed a promising way to stabilize a stainless steel AOD slag and con-vert it into a hydraulic binder.status: publishe

    Similar works

    Full text

    thumbnail-image

    Available Versions