746 research outputs found

    Modified Dihadron Fragmentation Functions in Hot and Nuclear Matter

    Full text link
    Medium modification of dihadron fragmentation functions due to gluon bremsstrahlung induced by multiple partonic scattering is studied in both deep-inelastic scattering (DIS) off large nuclei and high-energy heavy-ion collisions within the same framework of twist expansion. The modified fragmentation functions for dihadrons are found to follow closely that of single hadrons leading to a weak nuclear suppression of their ratios as measured by HERMES in DIS experiments. Meanwhile, a moderate medium enhancement of the near-side correlation of two high transverse momentum hadrons with increasing centrality is found in heavy-ion collisions because of the trigger bias and the increase in parton energy loss with centrality. Successful comparisons between theory and experiment for multi-hadron observables in both confining and deconfined environments offers comprehensive evidence for partonic energy loss as the mechanism of jet modification in dense matter.Comment: 4 pages, Revtex, 2 figures, revised figures and discussio

    Modified Fragmentation Function from Quark Recombination

    Full text link
    Within the framework of the constituent quark model, it is shown that the single hadron fragmentation function of a parton can be expressed as a convolution of shower diquark or triquark distribution function and quark recombination probability, if the interference between amplitudes of quark recombination with different momenta is neglected. The recombination probability is determined by the hadron's wavefunction in the constituent quark model. The shower diquark or triquark distribution functions of a fragmenting jet are defined in terms of overlapping matrices of constituent quarks and parton field operators. They are similar in form to dihadron or trihadron fragmentation functions in terms of parton operator and hadron states. Extending the formalism to the field theory at finite temperature, we automatically derive contributions to the effective single hadron fragmentation function from the recombination of shower and thermal constituent quarks. Such contributions involve single or diquark distribution functions which in turn can be related to diquark or triquark distribution functions via sum rules. We also derive QCD evolution equations for quark distribution functions that in turn determine the evolution of the effective jet fragmentation functions in a thermal medium.Comment: 23 pages in RevTex with 8 postscript figure

    Bremsstrahlung Radiation as Coherent State in Thermal QED

    Get PDF
    Based on fully finite temperature field theory we investigate the radiation probability in the bremsstrahlung process in thermal QED. It turns out that the infrared divergences resulting from the emission and absorption of the real photons are canceled by the virtual photon exchange processes at finite temperature. The full quantum calculation results for soft photons radiation coincide completely with that obtained in the semi-classical approximation. In the framework of Thermofield Dynamics it is shown that the bremsstrahlung radiation in thermal QED is a coherent state, the quasiclassical behavior of the coherent state leads to above coincidence.Comment: 8 pages, 2 figure

    The MUSE-Wide Survey: Survey Description and First Data Release

    Get PDF
    We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α\alpha (Lya) emitting galaxies with redshifts 2.9z6.32.9 \lesssim z \lesssim 6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δ\Deltaz\simeq0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available on the website https://musewide.aip.de. [abridged]Comment: 25 pages 15+1 figures. Accepted, A&A. Comments welcom

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18

    Get PDF
    Combining the precise parallaxes and optical photometry delivered by Gaia's second data release (Gaia DR2) with the photometric catalogues of PanSTARRS-1, 2MASS, and AllWISE, we derive Bayesian stellar parameters, distances, and extinctions for 265 million stars brighter than G=18. Because of the wide wavelength range used, our results substantially improve the accuracy and precision of previous extinction and effective temperature estimates. After cleaning our results for both unreliable input and output data, we retain 137 million stars, for which we achieve a median precision of 5% in distance, 0.20 mag in V-band extinction, and 245 K in effective temperature for G<14, degrading towards fainter magnitudes (12%, 0.20 mag, and 245 K at G=16; 16%, 0.23 mag, and 260 K at G=17, respectively). We find a very good agreement with the asteroseismic surface gravities and distances of 7000 stars in the Kepler, the K2-C3, and the K2-C6 fields, with stellar parameters from the APOGEE survey, as well as with distances to star clusters. Our results are available through the ADQL query interface of the Gaia mirror at the Leibniz-Institut f\"{u}r Astrophysik Potsdam (gaia.aip.de) and as binary tables at data.aip.de. As a first application, in this paper we provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps as a function of distance, and extensive density maps, demonstrating the potential of our value-added dataset for mapping the three-dimensional structure of our Galaxy. In particular, we see a clear manifestation of the Galactic bar in the stellar density distributions, an observation that can almost be considered a direct imaging of the Galactic bar.Comment: 25 pages, 23 figures + appendix, accepted for publication in A&A. Data (doi:10.17876/gaia/dr.2/51) are available through ADQL queries at gaia.aip.d
    corecore