1,107 research outputs found

    The Dynactin Complex Enhances the Speed of Microtubule-Dependent Motions of Adenovirus Both Towards and Away from the Nucleus

    Get PDF
    Unlike transport vesicles or organelles, human adenovirus (HAdV) directly binds to the microtubule minus end-directed motor dynein for transport to the nucleus. The dynein cofactor dynactin enhances nuclear transport of HAdV and boosts infection. To determine if dynactin has a specific role in cytoplasmic trafficking of incoming HAdV on microtubules, we used live cell spinning disc confocal microscopy at 25 Hz acquisition frequency and automated tracking of single virus particles at 20–50 nm spatial resolution. Computational dissection by machine-learning algorithms extracted specific motion patterns of viral trajectories. We found that unperturbed cells supported two kinds of microtubule-dependent motions, directed motions (DM) and fast drifts (FD). DM had speeds of 0.2 to 2 μm/s and run lengths of 0.4 up to 7 μm, while FD were slower and less extensive at 0.02 to 0.4 μm/s and 0.05 to 2.5 μm. Dynactin interference by overexpression of p50/dynamitin or a coiled-coil domain of p150/Glued reduced the speeds and amounts of both center- and periphery-directed DM but not FD, and inhibited infection. These results indicate that dynactin enhances adenovirus infection by increasing the speed and efficiency of dynein-mediated virus motion to the nucleus, and, surprisingly, also supports a hereto unknown motor activity for virus transport to the cell periphery

    Binding of yeast TFIIIC to tRNA gene bipartite internal promoters: Analysis of physical effects on the intervening DNA

    Full text link
    Complexes between transcription factor TFIIIC and eukaryotic tRNA gene internal promoter A and B boxes are unusual in that the binding to the two distinct sites tolerates considerable variation in both distance and helical orientation between the sites. Electrophoretic mobility of Saccharomyces cerevisiae TFIIIC complexes with circularly permuted tRNA gene fragments and sensitivity of the complexes to a single stranded-specific reagent, potassium permanganate, indicated that no significant bend or distortion was introduced into the DNA by simultaneous binding to both internal promoters. These data support a model in which variability in the relative positions of the two binding sites is compensated by flexibility in the structure of TFIIIC.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29371/1/0000441.pd

    Dynamic nuclear polarization at high magnetic fields in liquids

    Get PDF
    High field dynamic nuclear polarization spectrometer for liquid samples have been constructed. â–º The field dependence of the Overhauser DNP efficiency has been measured for the first time up to 9.2 T. â–º High DNP enhancements for liquid samples have been observed at high magnetic fields. â–º The enhancements have been compared with results from NMRD, MD and theoretical models. â–º Coherent and relaxation effects within fast magnetic field changes have been analyzed

    Augmenting microwave irradiation in MAS DNP NMR samples at 263 GHz

    Get PDF
    The magnetic microwave field strength and its detailed spatial distribution in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) probes capable of dynamic nuclear polarization (DNP) is investigated by numerical simulations with the objective to augment the magnetic microwave amplitude by structuring the sample in the mm and sub-mm range and by improving the coupling of the incident microwave beam to the sample. As it will be shown experimentally, both measures lead to an increase of the microwave efficiency in DNP MAS NMR

    Ovarian Cyst Fluid of Serous Ovarian Tumors Contains Large Quantities of the Brain Amino Acid N-acetylaspartate

    Get PDF
    BACKGROUND: In humans, N-acetyl L-aspartate (NAA) has not been detected in other tissues than the brain. The physiological function of NAA is yet undefined. Recently, it has been suggested that NAA may function as a molecular water pump, responsible for the removal of large amounts of water from the human brain. Ovarian tumors typically present as large cystic masses with considerable fluid accumulation. METHODOLOGY AND PRINCIPAL FINDINGS: Using Gas Chromatography-Mass Spectrometry, we demonstrated that NAA was present in a high micromolar concentration in oCF of epithelial ovarian tumors (EOTs) of serous histology, sometimes in the same range as found in the extracellular space of the human brain. In contrast, oCF of EOTs with a mucinous, endometrioid and clear cell histological subtype contained a low micromolar concentration of NAA. Serous EOTs have a cellular differentiation pattern which resembles the lining of the fallopian tube and differs from the other histological subtypes. The NAA concentration in two samples of fluid accumulation in the fallopian tube (hydrosalpinx) was in the same ranges as NAA found in oCF of serous EOTs. The NAA concentration in oCF of patients with serous EOTs was mostly 10 to 50 fold higher than their normal serum NAA concentration, whereas in patients with other EOT subtypes, serum and cyst fluid NAA concentration was comparable. CONCLUSIONS AND SIGNIFICANCE: The high concentration of NAA in cyst fluid of serous EOTs and low serum concentrations of NAA in these patients, suggest a local production of NAA in serous EOTs. Our findings provide the first identification of NAA concentrations high enough to suggest local production outside the human brain. Our findings contribute to the ongoing research understanding the physiological function of NAA in the human body

    DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk.

    Get PDF
    The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway
    • …
    corecore