20,497 research outputs found

    Jarzynski equation for a simple quantum system: Comparing two definitions of work

    Full text link
    The validity of the Jarzynski equation for a very simple, exactly solvable quantum system is analyzed. The implications of two different definitions of work proposed in the literature are investigated. The first one derives from measurements of the system energy at the beginning and at the end of the process under consideration making the work a classical stochastic variable with transition probabilities derived from quantum mechanics. In the second definition an operator of work is introduced and the average in the Jarzynski equation is a quantum expectation value. For the first definition a general quantum mechanical version of the Jarzynski equation is known to hold. For the second one the Jarzynski equation fails to yield the free energy difference at low temperature.Comment: 5 papes, 1 figure largly rewritten and slightly enlarged versio

    On the electromagnetic force on a polarizable body

    Full text link
    The force on a macroscopic polarizable body in an inhomogenous electromagnetic field is calculated for three simple exactly solvable situations. Comparing different approaches we pinpoint possible pitfalls and resolve recent confusion about the force density in ferrofluids.Comment: 8 pages, 3 figures, submitted to Am. J. Phy

    Digital data reformatter/deserializer

    Get PDF
    A method and apparatus is presented for reformatting and de-serializing a serially-received sequence of data words, each consisting of a fixed number of binary data bits. A block of nm bits is serially fed into a shift register or serially-connected group of shift registers. In lieu of the(nm-1)th shifts, the bits are rearranged within the shift register in parallel fashion, according to a prescribed scheme. Shifting then continues, until the first bit of each data word appears in the last bit position in the shift register, at which time that data word is shifted in parallel into an output buffer stage, from which it is outputted in parallel, after a fixed delay

    Hadronic photon interactions at high energies

    Full text link
    A simple phenomenological introduction to the physics of multi-pomeron exchange amplitudes in connection with the Abramovski-Gribov-Kancheli (AGK) cutting rules is given. The AGK cutting rules are applied to obtain qualitative and quantitative predictions on multiparticle production at high energies. On this basis, particle production in hadron-hadron scattering, photoproduction, and in particular the transition to deep-inelastic scattering is discussed.Comment: LaTeX, 6 pages, 6 ps-figs, sprocl.sty, talk given by R. Engel at "XXVI International Symposium on Multiparticle Dynamics" held in Faro, Portugal, September 199

    A new possibility to monitor collisions of relativistic heavy ions at LHC and RHIC

    Get PDF
    We consider the radiation of particles of one bunch in the collective field of the oncoming bunch, called coherent bremsstrahlung (CBS). The main characteristics of CBS for LHC (in the Pb-Pb mode) and for RHIC are calculated. At LHC about 3.9108dEγ/Eγ3.9 10^8 dE_\gamma/E_\gamma photons per second are expected for photon energies Eγ∼<Ec=93E_\gamma \stackrel{<} {\sim} E_c= 93 eV. It seems that CBS can be a potential tool for optimizing collisions and for measuring beam parameters. The bunch length can be found from the critical energy of the CBS spectrum; the transverse bunch size is related to the photon rate. A specific dependence of photon rate on the impact parameter between the beams allows for a fast control over the beam displacement.Comment: 9 pages + 4 figures, latex with poscript figures uuencode

    Spin Hall effect in a two-dimensional electron gas in the presence of a magnetic field

    Full text link
    We study the spin Hall effect of a two-dimensional electron gas in the presence of a magnetic field and both the Rashba and Dresselhaus spin-orbit interactions. We show that the value of the spin Hall conductivity, which is finite only if the Zeeman spin splitting is taken into account, may be tuned by varying the ratio of the in-plane and out-of-plane components of the applied magnetic field. We identify the origin of this behavior with the different role played by the interplay of spin-orbit and Zeeman couplings for in-plane and out-of-plane magnetic field components.Comment: 5 pages, 5 figures, submitte

    Impact of Uncertainties in Hadron Production on Air-Shower Predictions

    Full text link
    At high energy, cosmic rays can only be studied by measuring the extensive air showers they produce in the atmosphere of the Earth. Although the main features of air showers can be understood within a simple model of successive interactions, detailed simulations and a realistic description of particle production are needed to calculate observables relevant to air shower experiments. Currently hadronic interaction models are the main source of uncertainty of such simulations. We will study the effect of using different hadronic models available in CORSIKA and CONEX on extensive air shower predictions.Comment: 12 pages, 6 figures, to appear in the proceedings of International Conference on Interconnection between High Energy Physics and Astroparticle Physics: From Colliders to Cosmic Rays, Prague, Czech Republic, 7-13 Sep 200
    • …
    corecore