46 research outputs found

    Ca(BH4)2–Mg2NiH4: on the pathway to a Ca(BH4)2 system with a reversible hydrogen cycle

    Get PDF
    The hydride composite Ca(BH4)2–Mg2NiH4 transfers all boron to MgNi2.5B2 upon dehydrogenation, avoiding boron sinks. The rehydrogenation to Ca(BH4)2 was confirmed

    A new mutually destabilized reactive hydride system: LiBH4–Mg2NiH4

    Get PDF
    In this work, the hydrogen sorption properties of the LiBH4–Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure. To the best of our knowledge, it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4. A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here

    Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibition of their repair

    Get PDF
    Methacrylate monomers used in dentistry have been shown to induce DNA double strand breaks (DSBs), one of the most serious DNA damage. In the present work we show that a model dental adhesive consisting of 45% 2-hydroxyethyl methacrylate (HEMA) and 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) at concentrations up to 0.25 mM Bis-GMA induced oxidative DNA in cultured primary human gingival fibroblasts (HGFs) as evaluated by the comet assay and probed with human 8-hydroxyguanine DNA-glycosylase 1. HEMA/Bis-GMA induced DSBs in HGFs as assessed by the neutral comet assay and phosphorylation of the H2AX histone and sodium ascorbate or melatonin (5-methoxy-N-acetyltryptamine) both at 50 μM reduced the DSBs, they also inhibited apoptosis induced by HEMA/Bis-GMA. The adhesive slowed the kinetics of the repair of DNA damage induced by hydrogen peroxide in HGFs, while sodium ascorbate or melatonin improved the efficacy of H2O2-induced damage in the presence of the methacrylates. The adhesive induced a rise in the G2/M cell population, accompanied by a reduction in the S cell population and an increase in G0/G1 cell population. Sodium ascorbate or melatonin elevated the S population and reduced the G2/M population. In conclusion, HEMA/Bis-GMA induce DSBs through, at least in part, oxidative mechanisms, and these compounds may interfere with DSBs repair. Vitamin C or melatonin may reduce the detrimental effects induced by methacrylates applied in dentistry

    NMR data of biological macromolecules

    No full text

    Influence of cation exchange on the Al-27-NMR spectra of zeolites

    No full text
    The influence of cation exchange on the Al-27-NMR spectra of NaA-zeolites has been studied by Al-27-MAS- and MQ-MAS-Solid State-NMR. From the Al-27-spectra a characterization of the different At sites in the A zeolites according to their chemical environment and the structural changes on the aluminosilicate network caused by the cation exchange are obtained. It is found that the exchange with cations with smaller ion-radius cause stronger distortions of the Al-27-NMR-spectra than exchange with larger cations like Ba2+. Employing MQ-MAS spectroscopy these distortions are revealed as second order quadrupolar effects for the smaller cations and as a combination of chemical shift and second order quadrupolar interaction for the Ba cation. These changes of the quadrupolar coupling are interpreted numerically via calculations of the lowering of the symmetry of the EFG tensor. Finally it is found that the exchange with divalent cations leads to distortions of the zeolitic framework and the formation of an extra-framework aluminum. To the best of our knowledge this is for the first time that evidence for the production of extra frame work aluminum by pure cation exchange without any thermal treatment has been found in type A zeolites

    Influence of Cation Exchange on the ²⁷Al-NMR Spectra of Zeolites

    No full text
    The influence of cation exchange on the ²⁷Al-NMR spectra of NaA-zeolites has been studied by ²⁷Al-MAS- and MQ-MAS-Solid State-NMR. From the ²⁷Al-spectra a characterization of the different Al sites in the A zeolites according to their chemical environment and the structural changes on the aluminosilicate network caused by the cation exchange are obtained. It is found that the exchange with cations with smaller ion-radius cause stronger distortions of the ²⁷Al-NMR-spectra than exchange with larger cations like Ba²⁺. Employing MQ-MAS spectroscopy these distortions are revealed as second order quadrupolar effects for the smaller cations and as a combination of chemical shift and second order quadrupolar interaction for the Ba cation. These changes of the quadrupolar coupling are interpreted numerically via calculations of the lowering of the symmetry of the EFG tensor. Finally it is found that the exchange with divalent cations leads to distortions of the zeolitic framework and the formation of an extra-framework aluminum. To the best of our knowledge this is for the first time that evidence for the production of extra frame work aluminum by pure cation exchange without any thermal treatment has been found in type A zeolites

    A simple method for the characterization of OHO-hydrogen bonds by H-1-solid state NMR spectroscopy

    No full text
    A set of OHO hydrogen bonded systems with known neutron diffraction structure has been studied by fast H-1-MAS echo spectroscopy. It is shown that the application of a simple rotor synchronized echo sequence combined with fast MAS allows a faithful determination of the chemical shift of the proton in the hydrogen bond. Employing the empirical valence bond order model, the experimental H-1 chemical shifts of the hydrogen bonded protons are correlated to the hydrogen bond geometries. The resulting correlation between the proton chemical shift and the deviation of the proton from the center of the hydrogen bond covers a broad range of substances. Deviations from the correlation curve, which are observed in certain systems with strong hydrogen bonds, are explained in terms of proton tautomerism or delocalization in low-barrier hydrogen bonds. These deviations are a highly diagnostic tool to select potential candidates for further experimental and theoretical studies. Thus, the combination of the H-1-MAS echo sequence with the correlation curve yields a simple and versatile tool for the structural analysis of OHO hydrogen bonds. (C) 2004 Elsevier B.V. All rights reserved

    H-2-solid state NMR and DSC study of isobutyric acid in mesoporous silica materials

    No full text
    Solid state deuterium NMR has been used to study the molecular motion of d(6)-isobutyric acid (d(6)-iBA) in the pure (unconfined) state and confined in the cylindrical pores of two periodic mesoporous silica materials (MCM-41, pore size 3.3 nm and SBA-15, pore size 8 nm), and in a controlled pore glass (CPG-10-75, pore size ca. 10 nm). The line shape analysis of the spectra at different temperatures revealed three rotational states of the iBA molecules: liquid (fast anisotropic reorientation of the molecule), solid I (rotation of the methyl group) and solid II (no rotational motion on the time scale of the experiment). Transition temperatures between these states were determined from the temperature dependence of the fraction of molecules in these states. Whereas the solid I-solid II transition temperature is not affected by confinement, a significant lowering of the liquid-solid I transition temperature in the pores relative to the bulk acid was found for the three matrix materials, exhibiting an unusual dependence on pore size and pore morphology. Complementary DSC measurements on the same systems show that the rotational melting (solid I-liquid) of d(6)-iBA in the pores occurs at a temperature 20-45 K below the thermodynamic melting point. This. finding indicated that the decoupling of rotational and translational degrees of freedom in phase transitions in con. ned systems previously found for benzene is not restricted to molecules with non-specifi. c interactions, but represents a more general phenomenon
    corecore