2,220 research outputs found
The Tracking performance for the IDEA drift chamber
The IDEA detector concept for a future e+e- collider adopts an ultra-low mass drift chamber as a central tracking system. The He-based ultra-low mass drift chamber is designed to provide efficient tracking, a high-precision momentum measurement, and excellent particle identification by exploiting the cluster counting technique. This paper describes the expected tracking performance, obtained with full and fast simulation, for track reconstruction on detailed simulated physics events. Moreover, the details of the construction parameters of the drift chamber, including the inspection of new material for the wires, new techniques for soldering the wires, the development of an improved schema for the drift cell, and the choice of a gas mixture, will be described
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown. © CERN 2016
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …