3,631 research outputs found
Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size
We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey
Data Release 4 to study the systematic effects of specific star formation rate
(SSFR) and galaxy size (as measured by the half light radius, r_h) on the
mass-metallicity relation. We find that galaxies with high SSFR or large r_h
for their stellar mass have systematically lower gas phase-metallicities (by up
to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible
origins for these dependencies, including galactic winds/outflows, abundance
gradients, environment and star formation rate efficiencies.Comment: Accepted by ApJ Letter
A definitive merger-AGN connection at z~0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed
The question of whether galaxy mergers are linked to the triggering of active
galactic nuclei (AGN) continues to be a topic of considerable debate. The issue
can be broken down into two distinct questions: 1) Can galaxy mergers trigger
AGN? 2) Are galaxy mergers the dominant AGN triggering mechanism? A complete
picture of the AGN-merger connection requires that both of these questions are
addressed with the same dataset. In previous work, we have shown that galaxy
mergers selected from the Sloan Digital Sky Survey (SDSS) show an excess of
both optically-selected, and mid-IR colour-selected AGN, demonstrating that the
answer to the first of the above questions is affirmative. Here, we use the
same optical and mid-IR AGN selection to address the second question, by
quantifying the frequency of morphological disturbances in low surface
brightness r-band images from the Canada France Imaging Survey (CFIS). Only ~30
per cent of optical AGN host galaxies are morphologically disturbed, indicating
that recent interactions are not the dominant trigger. However, almost 60 per
cent of mid-IR AGN hosts show signs of visual disturbance, indicating that
interactions play a more significant role in nuclear feeding. Both mid-IR and
optically selected AGN have interacting fractions that are a factor of two
greater than a mass and redshift matched non-AGN control sample, an excess that
increases with both AGN luminosity and host galaxy stellar mass.Comment: Accepted for publication in MNRA
Recommended from our members
Dual and opposing roles of primary cilia in medulloblastoma development.
Recent work has shown that primary cilia are essential for Hedgehog (Hh) signaling during mammalian development. It is also known that aberrant Hh signaling can lead to cancer, but the role of primary cilia in oncogenesis is not known. Cerebellar granule neuron precursors (GNPs) can give rise to medulloblastomas, the most common malignant brain tumor in children. The primary cilium and Hh signaling are required for GNP proliferation. We asked whether primary cilia in GNPs have a role in medulloblastoma growth in mice. Genetic ablation of primary cilia blocked medulloblastoma formation when this tumor was driven by a constitutively active Smoothened protein (Smo), an upstream activator of Hh signaling. In contrast, removal of cilia was required for medulloblastoma growth by a constitutively active glioma-associated oncogene family zinc finger-2 (GLI2), a downstream transcription factor. Thus, primary cilia are either required for or inhibit medulloblastoma formation, depending on the initiating oncogenic event. Remarkably, the presence or absence of cilia was associated with specific variants of human medulloblastomas; primary cilia were found in medulloblastomas with activation in HH or WNT signaling but not in most medulloblastomas in other distinct molecular subgroups. Primary cilia could serve as a diagnostic tool and provide new insights into the mechanism of tumorigenesis
Artificial light and cloud cover interact to disrupt celestial migrations at night
The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species.Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lux can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species. <br/
Maximum likelihood estimation of reviewers' acumen in central review setting: categorical data
Successfully evaluating pathologists' acumen could be very useful in improving the concordance of their calls on histopathologic variables. We are proposing a new method to estimate the reviewers' acumen based on their histopathologic calls. The previously proposed method includes redundant parameters that are not identifiable and results are incorrect. The new method is more parsimonious and through extensive simulation studies, we show that the new method relies less on the initial values and converges to the true parameters. The result of the anesthetist data set by the new method is more convincing
Prognostic value and functional consequences of cell cycle inhibitor p27Kip1 loss in medulloblastoma
BACKGROUND: The cyclin-dependent kinase inhibitor p27(Kip1) functions during normal cerebellar development and has demonstrated tumor suppressor functions in mouse models of medulloblastoma. Because P27 loss is associated with increased proliferation, we assessed whether P27 absence in surgical medulloblastoma specimens correlated with response to therapy in pediatric patients enrolled in two large studies. Additionally, we examined the functional consequence of p27(Kip1) loss in the SmoA1 medulloblastoma model to distinguish whether p27(Kip1) reduces tumor initiation or slows tumor progression. FINDINGS: Analysis of 87 well-characterized patient samples identified a threshold of P27 staining at which significant P27 loss correlated with poor patient outcome. The same criteria, applied to a second test set of tissues from 141 patients showed no difference in survival between patients with minimal P27 staining and others, suggesting that P27 levels alone are not a sufficient prognostic indicator for identifying standard-risk patients that may fail standard therapy. These findings were in contrast to prior experiments completed using a mouse medulloblastoma model. Analysis of cerebellar tumor incidence in compound mutant mice carrying the activated Smoothened (SmoA1) allele that were heterozygous or nullizygous for p27(Kip1) revealed that p27(Kip1) loss did not alter the frequency of tumor initiation. Tumors haploinsufficient or nullizygous for p27(Kip1) were, however, more invasive and displayed a higher proliferative index, suggesting p27(Kip1) loss may contribute to SmoA1 medulloblastoma progression. CONCLUSIONS: These studies revealed P27 loss affects medulloblastoma progression rather than initiation and that this putative biomarker should not be used for stratifying children with medulloblastoma to risk-based therapeutic regimens
The limitations (and potential) of non-parametric morphology statistics for post-merger identification
Non-parametric morphology statistics have been used for decades to classify
galaxies into morphological types and identify mergers in an automated way. In
this work, we assess how reliably we can identify galaxy post-mergers with
non-parametric morphology statistics. Low-redshift (z<0.2), recent
(t_post-merger 100 kpc) post-merger galaxies are
drawn from the IllustrisTNG100-1 cosmological simulation. Synthetic r-band
images of the mergers are generated with SKIRT9 and degraded to various image
qualities, adding observational effects such as sky noise and atmospheric
blurring. We find that even in perfect quality imaging, the individual
non-parametric morphology statistics fail to recover more than 55% of the
post-mergers, and that this number decreases precipitously with worsening image
qualities. The realistic distributions of galaxy properties in IllustrisTNG
allow us to show that merger samples assembled using individual morphology
statistics are biased towards low mass, high gas fraction, and high mass ratio.
However, combining all of the morphology statistics together using either a
linear discriminant analysis or random forest algorithm increases the
completeness and purity of the identified merger samples and mitigates bias
with various galaxy properties. For example, we show that in imaging similar to
that of the 10-year depth of the Legacy Survey of Space and Time (LSST), a
random forest can identify 89% of mergers with a false positive rate of 17%.
Finally, we conduct a detailed study of the effect of viewing angle on merger
observability and find that there may be an upper limit to merger recovery due
to the orientation of merger features with respect to the observer.Comment: 32 pages, 21 figures Accepted for publication by MNRA
cIMPACTâNOW update 7: advancing the molecular classification of ependymal tumors
Advances in our understanding of the biological basis and molecular characteristics of ependymal tumors since the latest iteration of the World Health Organization (WHO) classification of CNS tumors (2016) have prompted the cIMPACTâNOW group to recommend a new classification. Separation of ependymal tumors by anatomic site is an important principle of the new classification and was prompted by methylome profiling data to indicate that molecular groups of ependymal tumors in the posterior fossa and supratentorial and spinal compartments are distinct. Common recurrent genetic or epigenetic alterations found in tumors belonging to the main molecular groups have been used to define tumor types at intracranial sites; C11orf95 and YAP1 fusion genes for supratentorial tumors and two types of posterior fossa ependymoma defined by methylation group, PFA and PFB. A recently described type of aggressive spinal ependymoma with MYCN amplification has also been included. Myxopapillary ependymoma and subependymoma have been retained as histopathologically defined tumor types, but the classification has dropped the distinction between classic and anaplastic ependymoma. While the cIMPACTâNOW group considered that data to inform assignment of grade to molecularly defined ependymomas are insufficiently mature, it recommends assigning WHO grade 2 to myxopapillary ependymoma and allows grade 2 or grade 3 to be assigned to ependymomas not defined by molecular status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/2/bpa12866_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/1/bpa12866.pd
An Arabic Version of the Spiritual Well-Being Scale
This article reports on two studies to develop and validate an Arabic language version of the Spiritual Well-Being Scale (SWBS). The first study was a pilot study at a major government university in Jordan (N = 75, students). The second and main study was conducted in 5 large regional hospitals in Jordan (N = 63, patients). The SWBS was translated from English to Arabic and reviewed by an expert panel for language, cultural, and spiritual consistency. The Arabic version of the SWBS was revised after the results of the pilot study and further reviewed by an expert panel. The resulting data were subjected to descriptive and factor analysis. Results showed that the final version of the SWBS used in the main study had a two-factor structure consistent with previous studies. Descriptive data for a range of demographic variables are presented. Issues of inadequate translation and lack of variation in responses for some items are identified and the results discussed in light of dominant Islamic theological frameworks. Š 2012 Taylor and Francis Group, LLC
Amplification and Overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in Medulloblastoma
Medulloblastoma is the most common malignant brain tumour of childhood. The identification of critical genes involved in its pathogenesis will be central to advances in our understanding of its molecular basis, and the development of improved therapeutic approaches.We performed a SNP-array based genome-wide copy number analysis in medulloblastoma cell lines, to identify regions of genomic amplification and homozygous deletion, which may harbour critical disease genes. A series of novel and established medulloblastoma defects were detected (MYC amplification (n = 4), 17q21.31 high-level gain (n = 1); 9p21.1-p21.3 (n = 1) and 6q23.1 (n = 1) homozygous deletion). Most notably, a novel recurrent region of genomic amplification at 8q24.22-q24.23 was identified (n = 2), and selected for further investigation. Additional analysis by interphase fluorescence in situ hybridisation (iFISH), PCR-based mapping and SNP-array revealed this novel amplification at 8q24.22-q24.23 is independent of MYC amplification at 8q24.21, and is unique to medulloblastoma in over 800 cancer cell lines assessed from different tumour types, suggesting it contains key genes specifically involved in medulloblastoma development. Detailed mapping identified a 3Mb common minimal region of amplification harbouring 3 coding genes (ZFAT1, LOC286094, KHDRBS3) and two genes encoding micro-RNAs (hsa-miR-30b, hsa-miR-30d). Of these, only expression of hsa-miR-30b, hsa-miR-30d and KHDRBS3 correlated with copy number status, and all three of these transcripts also displayed evidence of elevated expression in sub-sets of primary medulloblastomas, measured relative to the normal cerebellum.These data implicate hsa-miR-30b, hsa-miR-30d and KHDRBS3 as putative oncogenic target(s) of a novel recurrent medulloblastoma amplicon at 8q24.22-q24.23. Our findings suggest critical roles for these genes in medulloblastoma development, and further support the contribution of micro-RNA species to medulloblastoma pathogenesis
- âŚ