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Abstract

Successfully evaluating pathologists’ acumen could be very useful in improving the
concordance of their calls on histopathologic variables. We are proposing a new
method to estimate the reviewers’ acumen based on their histopathologic calls. The
previously proposed method includes redundant parameters that are not identifiable
and results are incorrect. The new method is more parsimonious and through
extensive simulation studies, we show that the new method relies less on the initial
values and converges to the true parameters. The result of the anesthetist data set
by the new method is more convincing.

1. Introduction
Histopathologic diagnosis and the subclassification of tumors into grades of malig-

nancy are critical to the care of cancer patients, serving as a basis for both prognosis

and therapy. Such diagnostic schemes evolve, and this process often involves reprodu-

cibility studies to ensure accuracy and clinical relevance. However, studies of existing

or novel histopathologic grading schemes often reveal diagnostic variance among

pathologists [1-4].

The process of histopathologic evaluation is necessarily subjective; even “objective”

assessments as part of the histologic work-up of a tumor, such as the mitotic index,

are semi-quantitative at best. While this subjectivity underlies discrepancies between

pathologists when several evaluate a series of tumors together, a pathologist’s experi-

ence and skill with different tumor types, especially uncommon tumors such as some

brain tumors, will influence his or her performance in this setting. This factor, patholo-

gist “acumen,” could be especially influential when new grading schemes are proposed

for uncommon tumors. A corollary of this influence is that discussion among a group

of pathologists with different levels of experience or acumen about how best to use

histopathologic variables in a new tumor-grading scheme might be expected to

improve the concordance of their calls. Although estimating inter- and intra-reviewer

agreement is important [5-8], in this paper, we are more interested in evaluating the

performance of individual reviewers [9,10].

A reviewer’s performance can be represented by a matrix
{
π k
jl , j = 1, . . . , J, l = 1, . . . , J

}
,

the probability that a reviewer, k, records values l given j is the true category. When

the grading category is binary variable, π k
11 and π k

22 represent the sensitivity or specifi-

city of reviewer k, and 1 − π k
11 and 1 − π k

22 are the corresponding false-positive or
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false-negative error rates. When the grading categories are more than two, π k
jl, j ≠ l are

called individual error rates for the kth reviewer [9] and

∑J

l=1
π k
jl = 1 for each j and k. (1)

π k
jj is defined as the reviewer’s acumen because we are more interested in π k

jj, j = 1,...J

than those error rates. Dawid and Skene [9] proposed a method based on the EM algo-

rithm to estimate π k
jl. We find that their method has serious drawbacks and may give

suspicious results. In particular, their method is over parameterized and doesn’t con-

verge to correct parameters for some initial values. We propose a modification to their

method, which is also based on the EM algorithm. In the next section, we first derive

the incomplete-data likelihood function and then show the EM algorithm solving proce-

dures. We use multiple simulation studies in Section 3 to demonstrate that the new

method converges to the correct parameters and relies less on the initial values. Finally,

we revisit the anesthetist data used by Dawid and Skene and present a new example of a

pathology review data from the Children’s Cancer Group (CCG)-945 study [11].

2. Model Reviewer’s Acumen
Let Xi = (Xi1, Xi2,..., XiK), i= 1,2,...,N, be the vector of pathologic grades by K reviewers

for the ith sample, in which Xik is the category assigned by the kth reviewer. Xik is a

categorical variable and takes values between 1 and J. Let Yi be the true unknown cate-

gory, following Bayes’ rule the likelihood that the kth reviewer classifies the ith sample

to the lth category is written as

p(Xik = l) =
J∑

j=1

(
p(Xik = l|Yi = j)

)nkil p(Yi = j)

=
J∑

j=1

(
π k
jl

)nkil
γij

(2)

where gij = p(Yi = j), is the probability that the ith sample is truly in category j and nkil
is the number of times that a reviewer k assigns the sample to category l. For most

studies, nkil is either 1 or 0, but it can take values greater than 1 if samples are reviewed

multiple times. Assuming that the reviewers work independently, the incomplete-data

likelihood function for K reviewers is written as

p(Xi1, . . . ,Xik) =
∑J

j=1

∏K

k=1

∏J

l=1

(
π k
jl

)nkil
γij (3)

Dawid and Skene used two latent variables to model true category probabilities, a

sample specific probability gij (Tij in the original paper) and population probability pj,

which is the proportion of the jth category in the population. Since the estimation of pj
can be expressed as a function of γ̂ij, pj are redundant and not identifiable. Because of

this, the modified model doesn’t include pj in the likelihood function and instead, pj
are expressed as a function of gij.
The overall log-likelihood function is written as

log L (�,�|X) =
∑N

i=1
log p(Xi1, . . . ,XiK) (4)
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where � =
{
π k
jl

}
and Θ = {gij}. Ω are reviewer specific parameters and Θ are sample

specific parameters. In total, there are K × J × (J - 1) + N parameters in the model. It

is worth noting that the true category probability, gij, is a latent variable and will be

estimated in the E step of the EM algorithm.

3. Simplex Based EM Algorithm

The method proposed by Dawid and Skene has a closed form solution for π k
jl, which is

derived from the complete data likelihood function. But, their method is overly para-

meterized, and the convergence relies heavily on the goodness of initial values. It is

easy to see that the estimator of γ̂ k
jl depends solely on its initial values when the esti-

mators of π̂ k
jl (equation 2.3 in the original paper) and p̂j (equation 2.4) are put into

equation 2.5 in their paper.

The incomplete data likelihood function, equation 4, is a mixture of multinomial

probabilities, in which the mixture probabilities, γ k
jl , are unknown. Although solving

the incomplete-data likelihood function directly is intractable, one can solve it itera-

tively using the EM algorithm. The EM algorithm has been widely used to solve mix-

ture models [12], especially those Gaussian mixture models in genetic mapping

studies [13]. The same procedures apply here as well. In E step, we estimate the

latent variable, γ̂ k
jl , by averaging the posterior probability of the true category over

all reviewers. In M step, we use simplex method to search for π̂ k
jl that maximize

equation 4.

Details of the procedures are as follows:

1. E step: Estimate the γ̂ k
jl using the posterior probability

γ̂ k
jl =

1
K

∑K

k=1

γ ∗
ij

∏J
l=1

(
π̂ k
jl

)nkil

∑J
j=1 γ ∗

ij

∏J
l=1

(
π̂ k
jl

)nkil
, (5)

where γ ∗
ij = p∗ (

Yi = j|Xi1, . . . ,XiK
)
is from the previous iteration and is considered as

a prior probability.

2. M step: Plug γ̂ k
jl into equation 4 and use the simplex method to search for the π̂ k

jl

that maximizes the incomplete-data likelihood function,

π̂ k
jl = argmax log L(�, �̂|X) (6)

3. Repeat the E step and M step until convergence.

The simplex algorithm, originally proposed by Nelder and Mead [14], provides an

efficient way to estimate parameters, especially when the parameter space is large [13].

It is a direct-search method for nonlinear unconstrained optimization. It attempts to

minimize a scalar-valued nonlinear function using only function values, without any

derivative information (explicit or implicit). The simplex algorithm uses linear
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adjustment of the parameters until some convergence criterion is met. The term “sim-

plex” arises because the feasible solutions for the parameters may be represented by a

polytope figure called a simplex. The simplex is a line in one dimension, a triangle in

two dimensions, and a tetrahedron in three dimensions. Since no division is required

in the calculation, the “divided by zero” runtime error is avoided.

4. Simulation Study
We design 4 simulation experiments with different sets of reviewers’ acumen to test

the performance of the proposed method. Each simulation assumes 100 samples, 6

reviewers, and 4 possible grading categories. The first 30 samples are known to be in

category 4, the next 30 in category 3, 20 in category 2, and the rest 20 in category 1.

In each simulation, we specify π k
jl and simulate grading categories according to these

probabilities:
⎧⎪⎨
⎪⎩

π k
jl = π k

jj , if l = j

π k
jl =

1 − π k
jj

J − 1
, if l �= j

(7)

Since we are more interested in π k
jj, only their true and estimated probabilities are

given in Tables 1, 2, 3, and 4. The first simulation is the scenario in which all

reviewers have good acumen in all categories. Most of them have an 80% chance of

making a correct assignment, and only two reviewers in two different categories have a

70% chance. The second simulation assumes that all reviewers have weak acumen in

all categories, with only a 50% chance of making correct assignments. The third simu-

lation assumes different reviewers have different acumen in different categories, ran-

ging from 50% to 90%. The last simulation assumes an extreme case, in which 3

reviewers have excellent acumen, a 90% chance, and the other 3 reviewers have weak

acumen, only a 50% chance. The estimated values of π̂ k
jj shown in Tables 1, 2, 3, and 4

are the average over 1000 repeats, and the numbers in the parentheses are the corre-

sponding square root of mean square errors (RMSE).

The estimated values for π̂ k
jl in all 4 simulation studies converge to true parameter

values. The probabilities for categories 3 and 4 are closer to the true values, and the

RMSEs are smaller. This is what is expected because categories 3 and 4 have 10 more

samples than categories 1 and 2. In general, the RMSE is higher for small probabilities

Table 1 MLE for the first simulation, in which all reviewers had good acumen

R1 R2 R3 R4 R5 R6

π k
11

0.8 0.8 0.8 0.8 0.8 0.8

π k
22

0.8 0.8 0.7 0.8 0.8 0.8

π k
33

0.8 0.8 0.8 0.8 0.8 0.7

π k
44

0.8 0.8 0.8 0.8 0.8 0.8

π̂ k
11

0.78 (0.09) 0.78 (0.09) 0.78 (0.1) 0.78 (0.09) 0.78 (0.09) 0.78 (0.1)

π̂ k
22

0.78 (0.09) 0.78 (0.09) 0.69 (0.11) 0.78 (0.09) 0.78 (0.09) 0.78 (0.1)

π̂ k
33

0.8 (0.08) 0.79 (0.07) 0.8 (0.09) 0.8 (0.08) 0.8 (0.07) 0.7 (0.1)

π̂ k
44

0.8 (0.08) 0.8 (0.08) 0.8 (0.09) 0.8 (0.08) 0.8 (0.08) 0.81 (0.09)
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and smaller for large probabilities. In addition, the values for π̂ k
jl, l ≠ j converge to the

true values as well(data not shown).

To show that our method is less dependent on initial values, we used non-informa-

tive initial values in our simulation studies, i.e. γ̂ k
jj =

1
J
and

⎧⎨
⎩

π̂ k
jl = 0.5, if l = j

π̂ k
jl =

0.5
J − 1

, if l �= j
. (8)

In Dawid and Skene method, γ̂ k
jj =

1
J
is a saddle point, at which the method converges

to itself if used as initial values. However, these initial set of values work well in our

method. We define that the computation reaches convergence when the log likelihood

function between two iterations is less than 10-3. Although more stringent threshold can

be used, we find that 10-3 is generally sufficient to guarantee convergence.

5. Examples
5.1 Revisit the Anesthetist data

This data set was used by Dawid and Skene for a demonstration of their method. Briefly,

the data came from five anesthetists who classified each patient on a scale of 1 to 4.

Anesthetist 1 assessed the patients three times, but we assume that the assessments were

independent, as did by the previous authors. Table 4 in their paper gives the estimated

probabilities gij for each patient. Most estimates in the table are either 1 or 0, which is

very unlikely given the level of disagreement between reviewers in the study.

Table 2 MLE for the second simulation, in which all reviewers had weak acumen

R1 R2 R3 R4 R5 R6

π k
11

0.5 0.5 0.5 0.5 0.5 0.5

π k
22

0.5 0.5 0.5 0.5 0.5 0.5

π k
33

0.5 0.5 0.5 0.5 0.5 0.5

π k
44

0.5 0.5 0.5 0.5 0.5 0.5

π̂ k
11

0.45 (0.16) 0.46 (0.15) 0.48 (0.15) 0.47 (0.16) 0.49 (0.15) 0.49 (0.15)

π̂ k
22

0.45 (0.16) 0.46 (0.15) 0.47 (0.16) 0.48 (0.16) 0.48 (0.15) 0.5 (0.15)

π̂ k
33

0.51 (0.15) 0.52 (0.15) 0.52 (0.15) 0.53 (0.14) 0.54 (0.14) 0.54 (0.14)

π̂ k
44

0.54 (0.16) 0.54 (0.16) 0.54 (0.16) 0.53 (0.15) 0.53 (0.15) 0.53 (0.15)

Table 3 MLE for the third simulation, in which reviewers had mixed acumen

R1 R2 R3 R4 R5 R6

π k
11

0.5 0.9 0.9 0.7 0.9 0.9

π k
22

0.7 0.9 0.9 0.9 0.5 0.9

π k
33

0.8 0.7 0.6 0.9 0.9 0.9

π k
44

0.8 0.9 0.6 0.9 0.7 0.9

π̂ k
11

0.5 (0.16) 0.88 (0.11) 0.88 (0.16) 0.69 (0.14) 0.88 (0.18) 0.87 (0.07)

π̂ k
22

0.7 (0.16) 0.87 (0.11) 0.88 (0.17) 0.87 (0.11) 0.5 (0.2) 0.86 (0.08)

π̂ k
33

0.8 (0.14) 0.7 (0.12) 0.6 (0.17) 0.89 (0.11) 0.9 (0.17) 0.88 (0.06)

π̂ k
44

0.81 (0.14) 0.91 (0.1) 0.6 (0.18) 0.9 (0.1) 0.7 (0.19) 0.9 (0.06)
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In the data, observer 1 assigned patient #36 to category 3 twice and category 4 once,

observers 2 and 4 assigned the same patient to category 4, and both observers 3 and 5

assigned him to category 3. It was estimated that the patient had 100% probability of

being in category 4, γ̂ k
36,4 = 4. After closely examining the data, we found that category

4 was actually the category to which all observers assigned patients least frequently,

and patient #11 was the only one all observers agreed on as being in category 4 and

there was no extra data to establish acumen in this category for any reviewers. Because

of this observation, their estimate of patient category probability is unrealistic and sus-

picious. For patient #3, reviewer 1 gave category 1 twice and category 2 once; reviewers

2, 4, 5 gave category 2 and reviewer 3 gave category 1. The patient was estimated 100%

in category 2. Results for patients 2, 10, and 14 are also suspicious.

We reanalyzed the anesthetic data using our method. The acumen estimates are

given in Table 5 and the estimated category assignment for each patient is given in

Table 6. For patient #36, we estimated that there was 73% chance that the patient was

in category 3 and a 27% chance he was in category 4. Patient #3 was estimated to have

50% chance of being in either category 1 or 2. Our estimates are more realistic.

5.2 Empirical Study: CCG-945

In the CCG-945 study [11], sections of study tumors were centrally reviewed, initially

by a study review neuropathologist and subsequently by 5 neuropathologists, including

the review pathologist. The review neuropathologist, who was masked to institutional

diagnoses and his original review diagnoses, provided revised review diagnoses based

on the revised WHO criteria [15], and that review was used to establish the consensus

diagnosis with the independent, concurrent reviews of 4 other experienced neuro-

pathologists who were masked to outcome. There were 172 randomized patients

reviewed in CCG-945. Five central reviewers classified tumors into 4 grading cate-

gories: 1 = anaplastic astrocytoma (AA); 2 = glioblastoma multiforme (GBM); 3 =

other high-grade glioma; and 4 = not high-grade glioma (Pollack et al., 2003) [11].

Category 3 is rather heterogeneous and contains all other high-grade glioma other

than AA and GBM. It was the least frequently used category by all reviewers. The esti-

mated acumen for each reviewer is shown in Table 7.

It is interesting to see that reviewers have different level of acumen to differentiate

AA from GBM based on the revised WHO criteria. If we assume 80% sensitivity (or

Table 4 MLE for the fourth simulation, in which some reviewers had good acumen and
some had weak acumen

R1 R2 R3 R4 R5 R6

π k
11

0.5 0.5 0.5 0.9 0.9 0.9

π k
22

0.5 0.5 0.5 0.9 0.9 0.9

π k
33

0.5 0.5 0.5 0.9 0.9 0.9

π k
44

0.5 0.5 0.5 0.9 0.9 0.9

π̂ k
11

0.5 (0.11) 0.5 (0.12) 0.5 (0.12) 0.86 (0.08) 0.86 (0.08) 0.86 (0.08)

π̂ k
22

0.5 (0.12) 0.5 (0.12) 0.5 (0.12) 0.86 (0.08) 0.86 (0.08) 0.86 (0.08)

π̂ k
33

0.5 (0.09) 0.51 (0.1) 0.51 (0.09) 0.89 (0.06) 0.88 (0.07) 0.88 (0.06)

π̂ k
44

0.51 (0.09) 0.51 (0.09) 0.51 (0.1) 0.91 (0.06) 0.9 (0.06) 0.9 (0.06)
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specificity) is an indicator of good acumen, reviewers 1 and 3 are very experienced in

grading AA and GBM, and reviewer 2 clearly needs some improvement. None of the

reviewers did well in grading category 3, i.e. other high-grade gliomas. This is some-

what expected because it is the least frequent and most heterogeneous category. When

the true category is 4, reviewers 1, 3, and 5 all assigned a noticeable proportion to

category 1. The reason may be that some low-grade gliomas in category 4 are difficult

to differentiate from AA according to WHO criteria.

6. Conclusion
The method developed by Dawid and Skene was based on the EM algorithm. It starts

with a complete data likelihood function, and then π k
jl has a closed form solution.

Their method only requires initial values for γ̂ij · γ̂ij =
1
J
, which are reasonable, non-

informative initial values, but they are saddle points of the complete data likelihood

Table 5 MLE of the observers’ acumen (individual error rate) from the anesthetic data

Observer 1

Observed Response 1 2 3 4

True Response 1 0.87 0.13 0 0

2 0.03 0.88 0.09 0

3 0 0.03 0.9 0.07

4 0.01 0.05 0.07 0.87

Observer 2

Observed Response 1 2 3 4

True Response 1 0.79 0.21 0 0

2 0.05 0.65 0.3 0

3 0 0 0.61 0.39

4 0.01 0.07 0.04 0.89

Observer 3

Observed Response 1 2 3 4

True Response 1 0.92 0.07 0.01 0

2 0.04 0.83 0.13 0

3 0 0.22 0.39 0.39

4 0.1 0.08 0 0.81

Observer 4

Observed Response 1 2 3 4

True Response 1 0.88 0.12 0 0

2 0.05 0.76 0.14 0.06

3 0 0 0.8 0.2

4 0.03 0.26 0.1 0.62

Observer 5

Observed Response 1 2 3 4

True Response 1 0.92 0.07 0.02 0

2 0.19 0.63 0.18 0

3 0 0.27 0.55 0.18

4 0 0 0.01 0.98
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function. The method does not converge from these initial values at all. Alternative

initial values (equation 9) calculated from the data were proposed to address this issue

γ̂ij =

∑
k n

k
ij∑

k

∑
l n

k
il

(9)

However, when their method converges, it may converge to suspicious results, as was

shown in their example.

Our method is less dependent on initial values and converges to similar values from

any reasonable initial values. Because our method starts with the incomplete data like-

lihood, there is no closed form solution for π̂ k
jl, and solving equation 4 directly is

intractable. We adopted the EM algorithm, which is widely used in solving Gaussian

mixture models, for this formidable task. In the M step, we used the simplex method

to search for parameters that maximize the incomplete data likelihood function.

In cases when a reviewer is uncertain about a particular sample, the same sample can

be recorded multiple times to different categories. No modification to the model is

necessary. Using simulation studies, we have shown that our method performs well at

a variety of scenarios with fairly small sample sizes. Our model has K × J × (J - 1) + N

parameters, J-1 fewer than Dawid and Skene’s model. Because the model is highly

parameterized, it would be naive to expect any of the theoretical large sample optimal-

ity properties to hold [9]. This work focuses entirely on estimating reviewers’ acumen,

and no hypothesis testing is discussed. We believe that the issue of hypothesis testing

can be addressed using a likelihood ratio test [16] and bootstrap method [17]. The

Table 6 Estimated category probability for each patient for the anesthetist data

Category Category

Patient 1 2 3 4 Patient 1 2 3 4

1 1 0 0 0 24 0.14 0.86 0 0

2 0 0 0.95 0.05 25 1 0 0 0

3 0.5 0.5 0 0 26 1 0 0 0

4 0.24 0.76 0 0 27 0 0.93 0.07 0

5 0 1 0 0 28 1 0 0 0

6 0 1 0 0 29 1 0 0 0

7 0.68 0.32 0 0 30 0.82 0.18 0 0

8 0 0 1 0 31 1 0 0 0

9 0 1 0 0 32 0 0 1 0

10 0 0.85 0.15 0 33 1 0 0 0

11 0 0 0 1 34 0 1 0 0

12 0 0.65 0.35 0 35 0 0.93 0.07 0

13 1 0 0 0 36 0 0 0.73 0.27

14 0.11 0.89 0 0 37 0.14 0.85 0.02 0

15 0.99 0.01 0 0 38 0 0.51 0.49 0

16 1 0 0 0 39 0 0 1 0

17 1 0 0 0 40 1 0 0 0

18 1 0 0 0 41 1 0 0 0

19 0 1 0 0 42 0.89 0.11 0 0

20 0.1 0.9 0 0 43 0 0.93 0.07 0

21 0 1 0 0 44 0.99 0.01 0 0

22 0 1 0 0 45 0 1 0 0

23 0 1 0 0
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reliability of the parameter estimation can be assessed using bootstrap method techni-

ques as well, but it is not the focus of this work. The R program used for the simula-

tion studies and for analyzing the anesthetic data is available upon request.
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