30 research outputs found
STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map
Multi-Task Learning (MTL) is a powerful technique that has gained popularity
due to its performance improvement over traditional Single-Task Learning (STL).
However, MTL is often challenging because there is an exponential number of
possible task groupings, which can make it difficult to choose the best one,
and some groupings might produce performance degradation due to negative
interference between tasks. Furthermore, existing solutions are severely
suffering from scalability issues, limiting any practical application. In our
paper, we propose a new data-driven method that addresses these challenges and
provides a scalable and modular solution for classification task grouping based
on hand-crafted features, specifically Data Maps, which capture the training
behavior for each classification task during the MTL training. We experiment
with the method demonstrating its effectiveness, even on an unprecedented
number of tasks (up to 100).Comment: Accepted submission to DMLR workshop @ ICML 2
Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation
Transcatheter aortic valve implantation is currently a well-established minimal invasive treatment option for patients with severe aortic valve stenosis. CT Angiography is used for the pre-operative planning and sizing of the prosthesis. To reduce the inconsistency in sizing due to interobserver variability, we introduce and evaluate an automatic aortic root landmarks detection method to determine the sizing parameters. The proposed algorithm detects the sinotubular junction, two coronary ostia, and three valvular hinge points on a segmented aortic root surface. Using these aortic root landmarks, the automated method determines annulus radius, annulus orientation, and distance from annulus plane to right and left coronary ostia. Validation is performed by the comparison with manual measurements of two observers for 40 CTA image datasets. Detection of landmarks showed high accuracy where the mean distance between the automatically detected and reference landmarks was 2.81 ± 2.08 mm, comparable to the interobserver variation of 2.67 ± 2.52 mm. The mean annulus to coronary ostium distance was 16.9 ± 3.3 and 17.1 ± 3.3 mm for the automated and the reference manual measurements, respectively, with a mean paired difference of 1.89 ± 1.71 mm and interobserver mean paired difference of 1.38 ± 1.52 mm. Automated detection of aortic root landmarks enables automated sizing with good agreement with manual measurements, which suggests applicability of the presented method in current clinical practic
The link between market orientation and performance in the Australian public sector
Marketing academics and practitioners assume a direct link between market orientation and performance and argue that this applies to both business and non-business organisations. While this aspect has been studied in the business sector, this paper discusses the concepts of market orientation and performance and investigates this relationship in the Australian public sector. The conceptualization of market orientation used is that by Jaworski and Kohli (1993) on which basis MARKOR was developed. This instrument together with an instrument to measure the perceptions of performance of senior managers in the Australian public sector are used to investigate the hypothesized link. The findings confirm a positive relationship between market orientation and performance. The size and type of public sector organisation involved are also found to affect the levels of market orientation together with its components and performance. From the findings, implication are drawn and directions for future research discussed.peer-reviewe
Generalisability of deep learning models in low-resource imaging settings: A fetal ultrasound study in 5 African countries
Most artificial intelligence (AI) research and innovations have concentrated in high-income countries, where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress has been made in limited-resource environments where medical imaging is needed. For example, in Sub-Saharan Africa the rate of perinatal mortality is very high due to limited access to antenatal screening. In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for diagnosis of fetal abnormalities. So far, deep learning models have been proposed to identify standard fetal planes, but there is no evidence of their ability to generalise in centres with low resources, i.e. with limited access to high-end ultrasound equipment and ultrasound data. This work investigates for the first time different strategies to reduce the domain-shift effect arisen from a fetal plane classification model trained on one clinical centre with high-resource settings and transferred to a new centre with low-resource settings. To that end, a classifier trained with 1,792 patients from Spain is first evaluated on a new centre in Denmark in optimal conditions with 1,008 patients and is later optimised to reach the same performance in five African centres (Egypt, Algeria, Uganda, Ghana and Malawi) with 25 patients each. The results show that a transfer learning approach for domain adaptation can be a solution to integrate small-size African samples with existing large-scale databases in developed countries. In particular, the model can be re-aligned and optimised to boost the performance on African populations by increasing the recall to 0.92±0.04 and at the same time maintaining a high precision across centres. This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources and, consequently, in higher need of clinical support
Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge
The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
Future-ai:International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and
healthcare, the deployment and adoption of AI technologies remain limited in
real-world clinical practice. In recent years, concerns have been raised about
the technical, clinical, ethical and legal risks associated with medical AI. To
increase real world adoption, it is essential that medical AI tools are trusted
and accepted by patients, clinicians, health organisations and authorities.
This work describes the FUTURE-AI guideline as the first international
consensus framework for guiding the development and deployment of trustworthy
AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and
currently comprises 118 inter-disciplinary experts from 51 countries
representing all continents, including AI scientists, clinicians, ethicists,
and social scientists. Over a two-year period, the consortium defined guiding
principles and best practices for trustworthy AI through an iterative process
comprising an in-depth literature review, a modified Delphi survey, and online
consensus meetings. The FUTURE-AI framework was established based on 6 guiding
principles for trustworthy AI in healthcare, i.e. Fairness, Universality,
Traceability, Usability, Robustness and Explainability. Through consensus, a
set of 28 best practices were defined, addressing technical, clinical, legal
and socio-ethical dimensions. The recommendations cover the entire lifecycle of
medical AI, from design, development and validation to regulation, deployment,
and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which
provides a structured approach for constructing medical AI tools that will be
trusted, deployed and adopted in real-world practice. Researchers are
encouraged to take the recommendations into account in proof-of-concept stages
to facilitate future translation towards clinical practice of medical AI