111 research outputs found

    Francesco Ferrara, il primo degli economisti cafoscarini

    Get PDF
    The paper presents the important personality of the great Italian economist Francesco Ferrara who has been the first Director of the new School of Commerce founded in Venice in 1868. The paper is divided in two parts: the first part presents the main features of Francesco Ferrara as an economist, showing how he was clearly a supporter of a free-market oriented vision of the economic analysis and of the economic policy, not liking at all a vision of the economic analysis separated from the political implications, but definitely favouring a political economy vision. He was a sharp opponent of socialism, although admiring the logical power of Marx's thought, but not Marxian ideas. But he was also an opponent of intermediate visions leading to mediations in the field of economic policy. His rather radical positions led him to resign from the role of minister of Finance. In the second part the paper shows how Ferrara accepted the proposal of Luigi Luzzatti to be appointed as director of new School of Commerce of Ca' Foscari in summer 1868; the paper shows how the relations between Ferrara and Luzzatti were characterized by polemical moments, both because of the lines followed by Ferrara in appointing the professors of the new school and because of the openness shown by Luzzatti, and not liked at all by Ferrara, towards policies showing a favorable attitude towards social interventions. Eventually the disagreements were solved. Finally, the paper shows how Ferrara succeeded in appointing at Ca' Foscari some of the most important Italian economists of his time, such as Maffeo Pantaleoni

    A study of internal gravity waves in the Po Valley

    Get PDF
    Issued as Preliminary report, Letter report and Final report, Project no. G-35-60

    An investigation of the interaction between turbulence and propagating internal gravity waves the planetary boundary layer

    Get PDF
    Issued as Reports [nos. 1-2], and Final project report, Project G-35-62

    A study of wave and wave turbulence dynamics in the earth's boundary layer

    No full text
    Issued as Quarterly reports no. [1-9], and Final report, Project no. G-35-610 (continuation of G-35-671

    Laboratory for Atmospheres: Philosophy, Organization, Major Activities, and 1999 Highlights

    No full text
    The Laboratory for Atmospheres is helping to answer questions related to climate, and climate change and other scientific questions about our planet and its neighbors. The Laboratory conducts a broad theoretical and experimental research program studying all aspects of the atmospheres of the Earth and other planets, including their structural, dynamical, radiative, and chemical properties. In this report,there is a statement of the labs philosophy and a description of it's role in NASA's mission. A broad description of the research and a summary of the scientists' major accomplishments in 1999 is also included. The report also presents useful information on human resources, scientific interactions, and outreach activities with the outside community

    NASA Perspectives on Earth Observations from Satellite or 50 Years of Meteorological Satellite Experiments-The NASA Perspective

    No full text
    The NASA was established in 1959. From those very eady days to the present NASA has been intimately involved with NOAA and the scientific community in the development and operation of satellite and sensor experiments. The early efforts included experiments on the TIROS and geostationary Applications Technology Satellites (ATS) series. In the latter case the spin-scan cameras conceived by Verner Suomi, along with the TIROS cameras, opened new vistas at what could be done in meteorological studies with the daily, nearly global, synoptic views from space-borne sensors As the years passed and the Nimbus series of satellites came into being in the 1960's, more quantitative observations with longer-lifetime, increasingly capable, better calibrated instruments came into being. NASA, in collaboration with and in support of NOAA, implemented operational systems that we now know as the Polar Operational Environmental Satellite (POES) series and the Geostationary Operational Environmental Satellite (GOES) series that provided dependable, continuous, dedicated satellite observations for use by the weather and atmospheric science communities. Through the 1970's, 1980's, and 1990's improved, well-calibrated instruments with more spectral bands extending into the thermal and the microwave portions of the electromagnetic spectrum were provided to obtain accurate soundings of the atmosphere, atmospheric chemistry constituents such as ozone, global sea surface temperature, snow and ice extent, vegetation dynamics, etc. In the 1990's and up to the present the NASA/Earth Observing System (EOS) has been developed, implemented, and operated over many years to provide a very comprehensive suite of observations of the atmosphere, as well as land and ocean parameters. The future looks bright wherein the development of new systems, broadly described by the National Academy of Science Decadal Study, is now underway. NASA, along with collaborations with NOAA, other agencies, and the scientific and applications communities looks forward to achieving in the years to come goals possible with the global information provided by satellites and continuously improved with technology development, joint data assimilation efforts, and attendant research studies

    Monsoon-Enso Relationships: A New Paradigm

    No full text
    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides a unified framework in which monsoon predictability, the role of regional vs. basin-scale processes, its relationship with different climate subsystems, and causes of secular changes in monsoon-ENSO relationship can be investigated

    A Cloud-Resolving Simulation of Hurricane Bob (1991): Storm Structure and Eyewall Buoyancy

    No full text
    A numerical simulation of Hurricane Bob (1991) is conducted using the Penn State University-National Center for Atmospheric Research mesoscale model MM5 with a horizontal grid spacing of 1.3 Km on the finest nested mesh The model produces a realistic hurricane that intensifies slowly during the period of fine-scale simulation. Time-averaged results reveal the effects of storm motion. vertical shear, beta gyres and deformation forcing on the structure of radial inflow, vertical motion, and precipitation. Instantaneous model fields show that radial inflow in the eyewall is very intense near the surface but transitions to strong low-level outflow near the top of the boundary layer. The low-level structure is modulated by a wavenumber 2 disturbance that rotates around the eyewall at half the speed of the maximum tangential winds and is consistent with a vortex Rossby edge wave. The statistical distribution of vertical velocity in the eyewall indicates that the eyewall is composed of a small number of intense updrafts that account for the majority of the upward mass flux rather than a more gradual and symmetric eyewall circulation, consistent with the concept of hot towers. Tongues of high equivalent potential temperature, Theta(sub e), are seen along the inner edge of the eyewall updraft and within the low-level outflow. This air originates from outside of the eyewall with the highest theta(sub e) air coming from the layer closest to the surface after penetrating closest to the center. Occasionally, high Theta(sub e), air within the eye is drawn into the eyewall updrafts. The high Theta(sub e), air rising within the eyewall is shown to be associated with positive eyewall buoyancy with sufficient convective available potential energy along its path to produce relatively strong convective updrafts. Although the requirements for conditional symmetric instability are met within the eyewall and the air parcel trajectories follow slanted paths, the radial displacement of air parcels in the low-level outflow moves the air parcel sufficiently far away from the upper- warm core that the air becomes unstable to vertical displacements. Hence, convective instability rather than symmetric instability accounts for the stronger updrafts in the eyewall

    Modeling Nitrogen Oxides in the Lower Stratosphere

    No full text
    This talk will focus on the status of current understanding (not a historical review) as regards modeling nitrogen oxides (NOy) in the lower stratosphere (LS). The presentation will be organized around three major areas of process understanding: 1) NOy sources, sinks, and transport to the LS, 2) NOy species partitioning, and 3) polar multiphase processes. In each area, process topics will be identified with an estimate of the degree of confidence associated with their representation in numerical models. Several exotic and/or speculative processes will also be discussed. Those topics associated with low confidence or knowledge gaps, weighted by their prospective importance in stratospheric chemical modeling, will be collected into recommendations for further study. Suggested approaches to further study will be presented for discussion
    corecore